Met-enkephalin alteration in the rat during chronic injection of morphine and/or midazolam

We have recently reported that the short-acting anesthetic and analgesic drug midazolam can produce analgesia and decrease morphine tolerance and dependence in the rat by interacting with the opioid system. This study was designed to investigate the effect of midazolam, morphine, and both together o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1997-11, Vol.775 (1-2), p.119-126
Hauptverfasser: Tejwani, Gopi A, Rattan, Anil K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have recently reported that the short-acting anesthetic and analgesic drug midazolam can produce analgesia and decrease morphine tolerance and dependence in the rat by interacting with the opioid system. This study was designed to investigate the effect of midazolam, morphine, and both together on met-enkephalin levels in the rat. Male Sprague–Dawley rats were divided into four groups: (1) saline-saline; (2) saline-morphine; (3) midazolam-saline, and (4) midazolam-morphine groups. First, a saline or midazolam injection was given intraperitoneally and after 30 min a second injection of saline or morphine was given subcutaneously once daily for 11 days. Animals were sacrificed on the 11th day 60 min after the last injection to measure met-enkephalin by radioimmunoassay. Morphine tolerant animals showed a significant increase in met-enkephalin levels in the cortex (137%) and midbrain (89%), and a significant decrease in met-enkephalin levels in the pituitary (74%), cerebellum (34%) and medulla (72%). Midazolam treated animals showed a significant decrease in met-enkephalin levels in the pituitary (63%), cortex (39%), medulla (58%), kidneys (36%), heart (36%) and adrenals (43%), and a significant increase in met-enkephalin levels in the striatum (54%) and pons (51%). When morphine and midazolam were injected together, midazolam antagonized the increase in met-enkephalin levels in cortex and midbrain region and the decrease in met-enkephalin level in the medulla region observed in morphine tolerant animals. These results indicate that morphine tolerance and dependence is associated with changes in the concentration of met-enkephalin in the brain. Midazolam may inhibit morphine tolerance and dependence by reversing some of the changes induced in met-enkephalin levels in brain by morphine in morphine tolerant and dependent animals.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(97)00875-5