Further similarities between astrocytes and perisinusoidal stellate cells of liver (Ito cells): Colocalization of desmin and glial fibrillary acidic protein in astroglial primary cultures

The colocalization of desmin and glial fibrillary acidic protein (GFAP) in astrocytes was inferred from previous studies demonstrating a unique antigenic composition comprising GFAP, desmin and vimentin in perisinusoidal stellate cells (PSC) of liver which share several features with astrocytes. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of the cell 1997-06, Vol.89 (3), p.169-177
1. Verfasser: Buniatian, Gayane Hrachia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The colocalization of desmin and glial fibrillary acidic protein (GFAP) in astrocytes was inferred from previous studies demonstrating a unique antigenic composition comprising GFAP, desmin and vimentin in perisinusoidal stellate cells (PSC) of liver which share several features with astrocytes. In the present study the colocalization of GFAP and desmin was investigated by double-immunolabeling experiments in 12-day-old rat astroglial primary cultures with antiserum against GFAP and two commercial monoclonal antibodies against desmin, antibodies of clone DEU-10 and clone DEB-5. These antibodies selectively decorated the perisinusoidal stellate cells (PSC) of liver for which desmin is known to be a marker. The results obtained with astroglial cells demonstrate that both GFAP and desmin are coexpressed in morphologically different types, process-bearing and process-lacking astrocytes. The expression of desmin was apparently more pronounced in process-lacking astrocytes and was considerably lower in process-bearing ones. In process-lacking astrocytes, in contrast to filamentous cytoplasmic staining for GFAP, the immunoreactivity for desmin was non-filamentous and was irregularly spread in the perinuclear cytoplasm of the cells, while in process-bearing astrocytes the pattern of staining for desmin was similar to that of GFAP. The variability in the intensity and pattern of staining for desmin in astrocytes might be due to transitional stages of differentiation for part of the cells. This interpretation was supported by the presence of GFAP in the cells weakly expressing smooth muscle alpha-actin and the absence of GFAP in the cells enriched with microfilaments.
ISSN:0248-4900
1768-322X
DOI:10.1016/S0248-4900(97)80034-2