Incorporating Prior Knowledge into Image Registration

The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 1997-11, Vol.6 (4), p.344-352
Hauptverfasser: Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 4
container_start_page 344
container_title NeuroImage (Orlando, Fla.)
container_volume 6
creator Ashburner, J.
Neelin, P.
Collins, D.L.
Evans, A.
Friston, K.
description The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.
doi_str_mv 10.1006/nimg.1997.0299
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79507355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811997902998</els_id><sourcerecordid>79507355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo67p69Sb05K012Wya5CiLH8UFRfQc0mRaIm2yJl3F_96WXbx5mgfvzWPmh9AlwQXBuLzxrm8LIiUv8FLKIzQnWLJcMr48njSjuSBEnqKzlD4wxpKsxAzN5Ipwycs5YpU3IW5D1IPzbfYSXYjZkw_fHdgWMueHkFW9HuUrtC4NUy74c3TS6C7BxWEu0Pv93dv6Md88P1Tr201uKJVDDqWlNauXghFbguTUSluO5zVY1LykjDHaYF1qIRsrNKsZWCAN0yAMaYQmdIGu973bGD53kAbVu2Sg67SHsEuKS4b52DMGi33QxJBShEZto-t1_FEEq4mTmjipiZOaOI0LV4fmXd2D_YsfwIy-2PswvvflIKpkHHgD1kUwg7LB_Vf9C56ld0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79507355</pqid></control><display><type>article</type><title>Incorporating Prior Knowledge into Image Registration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</creator><creatorcontrib>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</creatorcontrib><description>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.1997.0299</identifier><identifier>PMID: 9417976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Algorithms ; Bayes Theorem ; Brain Mapping ; Cephalometry ; Female ; Humans ; Image Processing, Computer-Assisted ; Male ; Mathematical Computing</subject><ispartof>NeuroImage (Orlando, Fla.), 1997-11, Vol.6 (4), p.344-352</ispartof><rights>1997 Academic Press</rights><rights>Copyright 1997 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</citedby><cites>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/nimg.1997.0299$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9417976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Neelin, P.</creatorcontrib><creatorcontrib>Collins, D.L.</creatorcontrib><creatorcontrib>Evans, A.</creatorcontrib><creatorcontrib>Friston, K.</creatorcontrib><title>Incorporating Prior Knowledge into Image Registration</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Brain Mapping</subject><subject>Cephalometry</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Mathematical Computing</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LxDAQxYMo67p69Sb05K012Wya5CiLH8UFRfQc0mRaIm2yJl3F_96WXbx5mgfvzWPmh9AlwQXBuLzxrm8LIiUv8FLKIzQnWLJcMr48njSjuSBEnqKzlD4wxpKsxAzN5Ipwycs5YpU3IW5D1IPzbfYSXYjZkw_fHdgWMueHkFW9HuUrtC4NUy74c3TS6C7BxWEu0Pv93dv6Md88P1Tr201uKJVDDqWlNauXghFbguTUSluO5zVY1LykjDHaYF1qIRsrNKsZWCAN0yAMaYQmdIGu973bGD53kAbVu2Sg67SHsEuKS4b52DMGi33QxJBShEZto-t1_FEEq4mTmjipiZOaOI0LV4fmXd2D_YsfwIy-2PswvvflIKpkHHgD1kUwg7LB_Vf9C56ld0g</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Ashburner, J.</creator><creator>Neelin, P.</creator><creator>Collins, D.L.</creator><creator>Evans, A.</creator><creator>Friston, K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19971101</creationdate><title>Incorporating Prior Knowledge into Image Registration</title><author>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Brain Mapping</topic><topic>Cephalometry</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Mathematical Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Neelin, P.</creatorcontrib><creatorcontrib>Collins, D.L.</creatorcontrib><creatorcontrib>Evans, A.</creatorcontrib><creatorcontrib>Friston, K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashburner, J.</au><au>Neelin, P.</au><au>Collins, D.L.</au><au>Evans, A.</au><au>Friston, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Prior Knowledge into Image Registration</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>1997-11-01</date><risdate>1997</risdate><volume>6</volume><issue>4</issue><spage>344</spage><epage>352</epage><pages>344-352</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9417976</pmid><doi>10.1006/nimg.1997.0299</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 1997-11, Vol.6 (4), p.344-352
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_79507355
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adolescent
Adult
Algorithms
Bayes Theorem
Brain Mapping
Cephalometry
Female
Humans
Image Processing, Computer-Assisted
Male
Mathematical Computing
title Incorporating Prior Knowledge into Image Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Prior%20Knowledge%20into%20Image%20Registration&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ashburner,%20J.&rft.date=1997-11-01&rft.volume=6&rft.issue=4&rft.spage=344&rft.epage=352&rft.pages=344-352&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.1997.0299&rft_dat=%3Cproquest_cross%3E79507355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79507355&rft_id=info:pmid/9417976&rft_els_id=S1053811997902998&rfr_iscdi=true