Incorporating Prior Knowledge into Image Registration
The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 1997-11, Vol.6 (4), p.344-352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 4 |
container_start_page | 344 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 6 |
creator | Ashburner, J. Neelin, P. Collins, D.L. Evans, A. Friston, K. |
description | The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater. |
doi_str_mv | 10.1006/nimg.1997.0299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79507355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811997902998</els_id><sourcerecordid>79507355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMo67p69Sb05K012Wya5CiLH8UFRfQc0mRaIm2yJl3F_96WXbx5mgfvzWPmh9AlwQXBuLzxrm8LIiUv8FLKIzQnWLJcMr48njSjuSBEnqKzlD4wxpKsxAzN5Ipwycs5YpU3IW5D1IPzbfYSXYjZkw_fHdgWMueHkFW9HuUrtC4NUy74c3TS6C7BxWEu0Pv93dv6Md88P1Tr201uKJVDDqWlNauXghFbguTUSluO5zVY1LykjDHaYF1qIRsrNKsZWCAN0yAMaYQmdIGu973bGD53kAbVu2Sg67SHsEuKS4b52DMGi33QxJBShEZto-t1_FEEq4mTmjipiZOaOI0LV4fmXd2D_YsfwIy-2PswvvflIKpkHHgD1kUwg7LB_Vf9C56ld0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79507355</pqid></control><display><type>article</type><title>Incorporating Prior Knowledge into Image Registration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</creator><creatorcontrib>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</creatorcontrib><description>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.1997.0299</identifier><identifier>PMID: 9417976</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Algorithms ; Bayes Theorem ; Brain Mapping ; Cephalometry ; Female ; Humans ; Image Processing, Computer-Assisted ; Male ; Mathematical Computing</subject><ispartof>NeuroImage (Orlando, Fla.), 1997-11, Vol.6 (4), p.344-352</ispartof><rights>1997 Academic Press</rights><rights>Copyright 1997 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</citedby><cites>FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/nimg.1997.0299$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9417976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Neelin, P.</creatorcontrib><creatorcontrib>Collins, D.L.</creatorcontrib><creatorcontrib>Evans, A.</creatorcontrib><creatorcontrib>Friston, K.</creatorcontrib><title>Incorporating Prior Knowledge into Image Registration</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Brain Mapping</subject><subject>Cephalometry</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Male</subject><subject>Mathematical Computing</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LxDAQxYMo67p69Sb05K012Wya5CiLH8UFRfQc0mRaIm2yJl3F_96WXbx5mgfvzWPmh9AlwQXBuLzxrm8LIiUv8FLKIzQnWLJcMr48njSjuSBEnqKzlD4wxpKsxAzN5Ipwycs5YpU3IW5D1IPzbfYSXYjZkw_fHdgWMueHkFW9HuUrtC4NUy74c3TS6C7BxWEu0Pv93dv6Md88P1Tr201uKJVDDqWlNauXghFbguTUSluO5zVY1LykjDHaYF1qIRsrNKsZWCAN0yAMaYQmdIGu973bGD53kAbVu2Sg67SHsEuKS4b52DMGi33QxJBShEZto-t1_FEEq4mTmjipiZOaOI0LV4fmXd2D_YsfwIy-2PswvvflIKpkHHgD1kUwg7LB_Vf9C56ld0g</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Ashburner, J.</creator><creator>Neelin, P.</creator><creator>Collins, D.L.</creator><creator>Evans, A.</creator><creator>Friston, K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19971101</creationdate><title>Incorporating Prior Knowledge into Image Registration</title><author>Ashburner, J. ; Neelin, P. ; Collins, D.L. ; Evans, A. ; Friston, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e6d3b5b2851d6e973d9d6095f08b7635553f0a6a89fd8a5b5ede1f5ae8c1f8a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Brain Mapping</topic><topic>Cephalometry</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Male</topic><topic>Mathematical Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashburner, J.</creatorcontrib><creatorcontrib>Neelin, P.</creatorcontrib><creatorcontrib>Collins, D.L.</creatorcontrib><creatorcontrib>Evans, A.</creatorcontrib><creatorcontrib>Friston, K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashburner, J.</au><au>Neelin, P.</au><au>Collins, D.L.</au><au>Evans, A.</au><au>Friston, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Prior Knowledge into Image Registration</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>1997-11-01</date><risdate>1997</risdate><volume>6</volume><issue>4</issue><spage>344</spage><epage>352</epage><pages>344-352</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9417976</pmid><doi>10.1006/nimg.1997.0299</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 1997-11, Vol.6 (4), p.344-352 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_79507355 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adolescent Adult Algorithms Bayes Theorem Brain Mapping Cephalometry Female Humans Image Processing, Computer-Assisted Male Mathematical Computing |
title | Incorporating Prior Knowledge into Image Registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Prior%20Knowledge%20into%20Image%20Registration&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ashburner,%20J.&rft.date=1997-11-01&rft.volume=6&rft.issue=4&rft.spage=344&rft.epage=352&rft.pages=344-352&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.1997.0299&rft_dat=%3Cproquest_cross%3E79507355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79507355&rft_id=info:pmid/9417976&rft_els_id=S1053811997902998&rfr_iscdi=true |