Incorporating Prior Knowledge into Image Registration

The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 1997-11, Vol.6 (4), p.344-352
Hauptverfasser: Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first step in the spatial normalization of brain images is usually to determine the affine transformation that best maps the image to a template image in a standard space. We have developed a rapid and automatic method for performing this registration, which uses a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of heads. We compared affine registrations with and without incorporating the prior knowledge. We found that the affine transformations derived using the Bayesian scheme are much more robust and that the rate of convergence is greater.
ISSN:1053-8119
1095-9572
DOI:10.1006/nimg.1997.0299