Adaptation and the color statistics of natural images

Color perception depends profoundly on adaptation processes that adjust sensitivity in response to the prevailing pattern of stimulation. We examined how color sensitivity and appearance might be influenced by adaptation to the color distributions characteristic of natural images. Color distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 1997-12, Vol.37 (23), p.3283-3298
Hauptverfasser: Webster, Michael A., Mollon, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Color perception depends profoundly on adaptation processes that adjust sensitivity in response to the prevailing pattern of stimulation. We examined how color sensitivity and appearance might be influenced by adaptation to the color distributions characteristic of natural images. Color distributions were measured for natural scenes by sampling an array of locations within each scene with a spectroradiometer, or by recording each scene with a digital camera successively through 31 interference filters. The images were used to reconstruct the L, M and S cone excitation at each spatial location, and the contrasts along three post-receptoral axes [L + M, L − M or S − (L + M)]. Individual scenes varied substantially in their mean chromaticity and luminance, in the principal color-luminance axes of their distributions, and in the range of contrasts in their distributions. Chromatic contrasts were biased along a relatively narrow range of bluish to yellowish-green angles, lying roughly between the S - (L + M) axis (which was more characteristic of scenes with lush vegetation and little sky) and a unique blue-yellow axis (which was more typical of arid scenes). For many scenes L - M and S - (L + M) signals were highly correlated, with weaker correlations between luminance and chromaticity. We use a two-stage model (von Kries scaling followed by decorrelation) to show how the appearance of colors may be altered by light adaptation to the mean if the distributions and by contrast adaptation to the contrast range and principal axes of the distributions; and we show that such adjustments are qualitatively consistent with empirical measurements of asymmetric color matches obtained after adaptation to successive random samples drawn from natural distributions of chromaticities and lightnesses. Such adaptation effects define the natural range of operating states of the visual system.
ISSN:0042-6989
1878-5646
DOI:10.1016/S0042-6989(97)00125-9