Role of sympathoadrenomedullary system in cardiovascular response to stress in rats
Sympathetic nerve and/or adrenal medulla contributions to stress-induced cardiovascular responses were investigated by factoring out their influence using adrenal demedullation (DMED) and/or chemical sympathectomy with guanethidine (GUAN). Rats divided into 4 groups [sham-operated/saline (SHAM/SAL),...
Gespeichert in:
Veröffentlicht in: | Journal of the autonomic nervous system 1989-11, Vol.28 (2), p.179-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sympathetic nerve and/or adrenal medulla contributions to stress-induced cardiovascular responses were investigated by factoring out their influence using adrenal demedullation (DMED) and/or chemical sympathectomy with guanethidine (GUAN). Rats divided into 4 groups [sham-operated/saline (SHAM/SAL), SHAM/GUAN, DMED/SAL and DMED/GUAN] were injected i.p. over 4 weeks with either saline or GUAN (25 mg/kg/day). At the end of this treatment period, blood pressure (BP) and heart rate (HR) were monitored via carotid catheter prior to and during restraint in conscious rats. Treatments did not alter basal BP or HR when compared to controls. Restraint increased HR (Δ72 bpm) and systolic, diastolic and mean BP (Δ approximately 20 mm Hg) in control animals. Restraint-induced HR change was significantly greater in DMED/SAL animals (Δ88 bpm), but less in SHAM/GUAN animals (Δ40 bpm) than in controls. DMED/GUAN was not different from SHAM/GUAN alone in altering HR response to stress, supporting the greater influence of sympathetic nerves over adrenal medulla in controlling HR. Chronic GUAN abolished normal pressor responses to restraint stress. DMED increased diastolic blood pressure response to stress. However, in DMED/GUAN rats, not only did stress fail to increase blood pressure but rather stress produced hypotension (Δ - 34 mm Hg MAP), demonstrating the role of adrenal medulla in maintaining BP during stress. Differential effects of the various treatments on diastolic and systolic pressure suggest that the treatments had effects on peripheral vasculature. These results demonstrate that sympathetic nerves and adrenal medulla have important influences on cardiovascular function during stress and that in the absence of either, the other system may partially compensate. However, in the absence of both systems the effects of other factors become apparent during stress. |
---|---|
ISSN: | 0165-1838 1872-7476 |
DOI: | 10.1016/0165-1838(89)90090-8 |