A stiffness-varying model of human gait

We report on a conceptual two degrees of freedom (2 DOF) human gait model, which incorporates nonlinear joint stiffness as a stabilizing agent. Specifically, muscle spring-like property provides inherent stability during gait movement using a nonlinear angular spring and dash pot at each joint. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 1997-09, Vol.19 (6), p.518-524
Hauptverfasser: Duan, X.H., Allen, R.H., Sun, J.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on a conceptual two degrees of freedom (2 DOF) human gait model, which incorporates nonlinear joint stiffness as a stabilizing agent. Specifically, muscle spring-like property provides inherent stability during gait movement using a nonlinear angular spring and dash pot at each joint. The instability problem of the gait model in direct dynamic analysis is overcome by simulating the human co-contraction muscle function. By developing dynamic system stability requirements and hypothesizing a minimum joint stiffness criterion, we determine time-varying joint stiffness. Optimum joint stiffnesses are present for varying gait pattern, stride lengths and cadences. We conclude that nonlinear joint stiffness can be incorporated into gait models to overcome stability problems inherent in such linkage models.
ISSN:1350-4533
1873-4030
DOI:10.1016/S1350-4533(97)00022-2