The Protein-tyrosine Phosphatase SHP-2 Associates with Tyrosine-phosphorylated Adhesion Molecule PECAM-1 (CD31)

Aggregation of many cell-surface receptors results in tyrosine phosphorylation of numerous proteins. We previously observed the tyrosine phosphorylation of the platelet/endothelial cell adhesion molecule, PECAM-1 (CD31), after FcεRI stimulation in rat basophilic leukemia RBL-2H3 cells. Here we found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-12, Vol.272 (49), p.31086-31091
Hauptverfasser: Sagawa, Kenji, Kimura, Teruaki, Swieter, Mark, Siraganian, Reuben P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aggregation of many cell-surface receptors results in tyrosine phosphorylation of numerous proteins. We previously observed the tyrosine phosphorylation of the platelet/endothelial cell adhesion molecule, PECAM-1 (CD31), after FcεRI stimulation in rat basophilic leukemia RBL-2H3 cells. Here we found that PECAM-1 was also transiently tyrosine-phosphoryated after adherence of these cells to fibronectin. Similarly aggregation of the T cell receptor on Jurkat cells also induced this tyrosine phosphorylation. The protein-tyrosine phosphatase SHP-2 is a widely expressed cytosolic enzyme with two Src homology 2 (SH2) domains. SHP-2, but not the related protein-tyrosine phosphatase SHP-1, associated with PECAM-1. This association of the two proteins correlated with the extent of the tyrosine phosphorylation of PECAM-1. A fusion protein containing the two SH2 domains of SHP-2 precipitated PECAM-1 from cell lysates and also directly bound to phosphorylated PECAM-1. In immune precipitate phosphatase assays, there was tyrosine dephosphorylation of PECAM-1. Therefore, integrin and immune receptor activation results in tyrosine phosphorylation of PECAM-1 and the binding of the protein-tyrosine phosphatase SHP-2, which could regulate receptor-mediated signaling in cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.49.31086