Monitoring changes in lung air and liquid volumes with electrical impedance tomography

A. Adler 1 , 2 , R. Amyot 3 , R. Guardo 1 , J. H. T. Bates 2 , and Y. Berthiaume 3 3  Centre de Recherche Hôtel-Dieu de Montréal and Department of Medicine, Université de Montréal, 1  Institut de Génie Biomédical, École Polytechnique, and 2  Meakins-Christie Laboratories and Department of Biomedical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 1997-11, Vol.83 (5), p.1762-1767
Hauptverfasser: Adler, A, Amyot, R, Guardo, R, Bates, J. H. T, Berthiaume, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1767
container_issue 5
container_start_page 1762
container_title Journal of applied physiology (1985)
container_volume 83
creator Adler, A
Amyot, R
Guardo, R
Bates, J. H. T
Berthiaume, Y
description A. Adler 1 , 2 , R. Amyot 3 , R. Guardo 1 , J. H. T. Bates 2 , and Y. Berthiaume 3 3  Centre de Recherche Hôtel-Dieu de Montréal and Department of Medicine, Université de Montréal, 1  Institut de Génie Biomédical, École Polytechnique, and 2  Meakins-Christie Laboratories and Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H2W 1T8 Received 11 February 1997; accepted in final form 25 June 1997. Adler, A., R. Amyot, R. Guardo, J. H. T. Bates, and Y. Berthiaume. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 83(5): 1762-1767, 1997. Electrical impedance tomography (EIT) uses electrical measurements at electrodes placed around the thorax to image changes in the conductivity distribution within the thorax. This technique is well suited to studying pulmonary function because the movement of air, blood, and extravascular fluid induces significant conductivity changes within the thorax. We conducted three experimental protocols in a total of 19 dogs to assess the accuracy with which EIT can quantify changes in the volumes of both gas and fluid in the lungs. In the first protocol, lung volume increments from 50 to 1,000 ml were applied with a large syringe. EIT measured these volume changes with an average error of 27 ± 6 ml. In the second protocol, EIT measurements were made at end expiration and end inspiration during regular ventilation with tidal volume ranging from 100 to 1,000 ml. The average error in the EIT estimates of tidal volume was 90 ± 43 ml. In the third protocol, lung liquid volume was measured by instilling 5% albumin solution into a lung lobe in increments ranging from 10 to 100 ml. EIT measured these volume changes with an average error of 10 ± 10 ml and was also able to detect into which lobe the fluid had been instilled. These results indicate that EIT can noninvasively measure changes in the volumes of both gas and fluid in the lungs with clinically useful accuracy. lung water; lung volume; thoracic impedance 0161-7567/97 $5.00 Copyright © 1997 the American Physiological Society
doi_str_mv 10.1152/jappl.1997.83.5.1762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79436376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79436376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7188683eabfda96705c6cf665fce7eb1358e88d7c0458c6563f122f0aa745653</originalsourceid><addsrcrecordid>eNp1kM1O3DAUha0KBAPtG7SSF6hik9SO458sESoFCdTNqFvL49iJkRMHOymdt68HRgMbVldX55x7jz4AvmJUYkyrH49qmnyJm4aXgpS0xJxVn8AqS1WBGcJHYCU4RQWngp-Cs5QeEcJ1TfEJOGkIp6RuVuDPQxjdHKIbO6h7NXYmQTdCv-RduQjV2ELvnhbXwr_BL0OWn93cQ-ONnqPTykM3TKZVozZwDkPoopr67WdwbJVP5st-noP1zc_19W1x__vX3fXVfaFr1MwFx0IwQYza2FY1jCOqmbaMUasNNxtMqDBCtFyjmgrNKCMWV5VFSvGaMkrOwffXs1MMT4tJsxxc0sZ7NZqwJMmbmjDCWTbWr0YdQ0rRWDlFN6i4lRjJHU35QlPuaEpBJJU7mjn2bX9_2QymPYT2-LJ-sddVyihszBhcOtgqRDHnzdv33nX9s4tGZkTJBR-6rbxZvF-bf_OuweGznFqbY5cfx7L7XdH_UkGgww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79436376</pqid></control><display><type>article</type><title>Monitoring changes in lung air and liquid volumes with electrical impedance tomography</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Adler, A ; Amyot, R ; Guardo, R ; Bates, J. H. T ; Berthiaume, Y</creator><creatorcontrib>Adler, A ; Amyot, R ; Guardo, R ; Bates, J. H. T ; Berthiaume, Y</creatorcontrib><description>A. Adler 1 , 2 , R. Amyot 3 , R. Guardo 1 , J. H. T. Bates 2 , and Y. Berthiaume 3 3  Centre de Recherche Hôtel-Dieu de Montréal and Department of Medicine, Université de Montréal, 1  Institut de Génie Biomédical, École Polytechnique, and 2  Meakins-Christie Laboratories and Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H2W 1T8 Received 11 February 1997; accepted in final form 25 June 1997. Adler, A., R. Amyot, R. Guardo, J. H. T. Bates, and Y. Berthiaume. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 83(5): 1762-1767, 1997. Electrical impedance tomography (EIT) uses electrical measurements at electrodes placed around the thorax to image changes in the conductivity distribution within the thorax. This technique is well suited to studying pulmonary function because the movement of air, blood, and extravascular fluid induces significant conductivity changes within the thorax. We conducted three experimental protocols in a total of 19 dogs to assess the accuracy with which EIT can quantify changes in the volumes of both gas and fluid in the lungs. In the first protocol, lung volume increments from 50 to 1,000 ml were applied with a large syringe. EIT measured these volume changes with an average error of 27 ± 6 ml. In the second protocol, EIT measurements were made at end expiration and end inspiration during regular ventilation with tidal volume ranging from 100 to 1,000 ml. The average error in the EIT estimates of tidal volume was 90 ± 43 ml. In the third protocol, lung liquid volume was measured by instilling 5% albumin solution into a lung lobe in increments ranging from 10 to 100 ml. EIT measured these volume changes with an average error of 10 ± 10 ml and was also able to detect into which lobe the fluid had been instilled. These results indicate that EIT can noninvasively measure changes in the volumes of both gas and fluid in the lungs with clinically useful accuracy. lung water; lung volume; thoracic impedance 0161-7567/97 $5.00 Copyright © 1997 the American Physiological Society</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/jappl.1997.83.5.1762</identifier><identifier>PMID: 9375349</identifier><identifier>CODEN: JAPHEV</identifier><language>eng</language><publisher>Bethesda, MD: Am Physiological Soc</publisher><subject>Air breathing ; Anesthesia ; Animals ; Biological and medical sciences ; Dogs ; Electric Impedance ; Electrocardiography ; Fundamental and applied biological sciences. Psychology ; Image Processing, Computer-Assisted ; Lung - anatomy &amp; histology ; Lung - physiology ; Lung Volume Measurements ; Respiratory Mechanics - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Tomography ; Vertebrates: respiratory system</subject><ispartof>Journal of applied physiology (1985), 1997-11, Vol.83 (5), p.1762-1767</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7188683eabfda96705c6cf665fce7eb1358e88d7c0458c6563f122f0aa745653</citedby><cites>FETCH-LOGICAL-c409t-7188683eabfda96705c6cf665fce7eb1358e88d7c0458c6563f122f0aa745653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2051779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9375349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adler, A</creatorcontrib><creatorcontrib>Amyot, R</creatorcontrib><creatorcontrib>Guardo, R</creatorcontrib><creatorcontrib>Bates, J. H. T</creatorcontrib><creatorcontrib>Berthiaume, Y</creatorcontrib><title>Monitoring changes in lung air and liquid volumes with electrical impedance tomography</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>A. Adler 1 , 2 , R. Amyot 3 , R. Guardo 1 , J. H. T. Bates 2 , and Y. Berthiaume 3 3  Centre de Recherche Hôtel-Dieu de Montréal and Department of Medicine, Université de Montréal, 1  Institut de Génie Biomédical, École Polytechnique, and 2  Meakins-Christie Laboratories and Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H2W 1T8 Received 11 February 1997; accepted in final form 25 June 1997. Adler, A., R. Amyot, R. Guardo, J. H. T. Bates, and Y. Berthiaume. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 83(5): 1762-1767, 1997. Electrical impedance tomography (EIT) uses electrical measurements at electrodes placed around the thorax to image changes in the conductivity distribution within the thorax. This technique is well suited to studying pulmonary function because the movement of air, blood, and extravascular fluid induces significant conductivity changes within the thorax. We conducted three experimental protocols in a total of 19 dogs to assess the accuracy with which EIT can quantify changes in the volumes of both gas and fluid in the lungs. In the first protocol, lung volume increments from 50 to 1,000 ml were applied with a large syringe. EIT measured these volume changes with an average error of 27 ± 6 ml. In the second protocol, EIT measurements were made at end expiration and end inspiration during regular ventilation with tidal volume ranging from 100 to 1,000 ml. The average error in the EIT estimates of tidal volume was 90 ± 43 ml. In the third protocol, lung liquid volume was measured by instilling 5% albumin solution into a lung lobe in increments ranging from 10 to 100 ml. EIT measured these volume changes with an average error of 10 ± 10 ml and was also able to detect into which lobe the fluid had been instilled. These results indicate that EIT can noninvasively measure changes in the volumes of both gas and fluid in the lungs with clinically useful accuracy. lung water; lung volume; thoracic impedance 0161-7567/97 $5.00 Copyright © 1997 the American Physiological Society</description><subject>Air breathing</subject><subject>Anesthesia</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Dogs</subject><subject>Electric Impedance</subject><subject>Electrocardiography</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Image Processing, Computer-Assisted</subject><subject>Lung - anatomy &amp; histology</subject><subject>Lung - physiology</subject><subject>Lung Volume Measurements</subject><subject>Respiratory Mechanics - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Tomography</subject><subject>Vertebrates: respiratory system</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1O3DAUha0KBAPtG7SSF6hik9SO458sESoFCdTNqFvL49iJkRMHOymdt68HRgMbVldX55x7jz4AvmJUYkyrH49qmnyJm4aXgpS0xJxVn8AqS1WBGcJHYCU4RQWngp-Cs5QeEcJ1TfEJOGkIp6RuVuDPQxjdHKIbO6h7NXYmQTdCv-RduQjV2ELvnhbXwr_BL0OWn93cQ-ONnqPTykM3TKZVozZwDkPoopr67WdwbJVP5st-noP1zc_19W1x__vX3fXVfaFr1MwFx0IwQYza2FY1jCOqmbaMUasNNxtMqDBCtFyjmgrNKCMWV5VFSvGaMkrOwffXs1MMT4tJsxxc0sZ7NZqwJMmbmjDCWTbWr0YdQ0rRWDlFN6i4lRjJHU35QlPuaEpBJJU7mjn2bX9_2QymPYT2-LJ-sddVyihszBhcOtgqRDHnzdv33nX9s4tGZkTJBR-6rbxZvF-bf_OuweGznFqbY5cfx7L7XdH_UkGgww</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Adler, A</creator><creator>Amyot, R</creator><creator>Guardo, R</creator><creator>Bates, J. H. T</creator><creator>Berthiaume, Y</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19971101</creationdate><title>Monitoring changes in lung air and liquid volumes with electrical impedance tomography</title><author>Adler, A ; Amyot, R ; Guardo, R ; Bates, J. H. T ; Berthiaume, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7188683eabfda96705c6cf665fce7eb1358e88d7c0458c6563f122f0aa745653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Air breathing</topic><topic>Anesthesia</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Dogs</topic><topic>Electric Impedance</topic><topic>Electrocardiography</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Image Processing, Computer-Assisted</topic><topic>Lung - anatomy &amp; histology</topic><topic>Lung - physiology</topic><topic>Lung Volume Measurements</topic><topic>Respiratory Mechanics - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Tomography</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, A</creatorcontrib><creatorcontrib>Amyot, R</creatorcontrib><creatorcontrib>Guardo, R</creatorcontrib><creatorcontrib>Bates, J. H. T</creatorcontrib><creatorcontrib>Berthiaume, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, A</au><au>Amyot, R</au><au>Guardo, R</au><au>Bates, J. H. T</au><au>Berthiaume, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring changes in lung air and liquid volumes with electrical impedance tomography</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>1997-11-01</date><risdate>1997</risdate><volume>83</volume><issue>5</issue><spage>1762</spage><epage>1767</epage><pages>1762-1767</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><coden>JAPHEV</coden><abstract>A. Adler 1 , 2 , R. Amyot 3 , R. Guardo 1 , J. H. T. Bates 2 , and Y. Berthiaume 3 3  Centre de Recherche Hôtel-Dieu de Montréal and Department of Medicine, Université de Montréal, 1  Institut de Génie Biomédical, École Polytechnique, and 2  Meakins-Christie Laboratories and Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H2W 1T8 Received 11 February 1997; accepted in final form 25 June 1997. Adler, A., R. Amyot, R. Guardo, J. H. T. Bates, and Y. Berthiaume. Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J. Appl. Physiol. 83(5): 1762-1767, 1997. Electrical impedance tomography (EIT) uses electrical measurements at electrodes placed around the thorax to image changes in the conductivity distribution within the thorax. This technique is well suited to studying pulmonary function because the movement of air, blood, and extravascular fluid induces significant conductivity changes within the thorax. We conducted three experimental protocols in a total of 19 dogs to assess the accuracy with which EIT can quantify changes in the volumes of both gas and fluid in the lungs. In the first protocol, lung volume increments from 50 to 1,000 ml were applied with a large syringe. EIT measured these volume changes with an average error of 27 ± 6 ml. In the second protocol, EIT measurements were made at end expiration and end inspiration during regular ventilation with tidal volume ranging from 100 to 1,000 ml. The average error in the EIT estimates of tidal volume was 90 ± 43 ml. In the third protocol, lung liquid volume was measured by instilling 5% albumin solution into a lung lobe in increments ranging from 10 to 100 ml. EIT measured these volume changes with an average error of 10 ± 10 ml and was also able to detect into which lobe the fluid had been instilled. These results indicate that EIT can noninvasively measure changes in the volumes of both gas and fluid in the lungs with clinically useful accuracy. lung water; lung volume; thoracic impedance 0161-7567/97 $5.00 Copyright © 1997 the American Physiological Society</abstract><cop>Bethesda, MD</cop><pub>Am Physiological Soc</pub><pmid>9375349</pmid><doi>10.1152/jappl.1997.83.5.1762</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 1997-11, Vol.83 (5), p.1762-1767
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_79436376
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Air breathing
Anesthesia
Animals
Biological and medical sciences
Dogs
Electric Impedance
Electrocardiography
Fundamental and applied biological sciences. Psychology
Image Processing, Computer-Assisted
Lung - anatomy & histology
Lung - physiology
Lung Volume Measurements
Respiratory Mechanics - physiology
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Tomography
Vertebrates: respiratory system
title Monitoring changes in lung air and liquid volumes with electrical impedance tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20changes%20in%20lung%20air%20and%20liquid%20volumes%20with%20electrical%20impedance%20tomography&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Adler,%20A&rft.date=1997-11-01&rft.volume=83&rft.issue=5&rft.spage=1762&rft.epage=1767&rft.pages=1762-1767&rft.issn=8750-7587&rft.eissn=1522-1601&rft.coden=JAPHEV&rft_id=info:doi/10.1152/jappl.1997.83.5.1762&rft_dat=%3Cproquest_cross%3E79436376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79436376&rft_id=info:pmid/9375349&rfr_iscdi=true