Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance

Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 1997-11, Vol.96 (9), p.2813-2822
Hauptverfasser: SWERDLOW, C. D, BREWER, J. E, KASS, R. M, KNOLL, M. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2822
container_issue 9
container_start_page 2813
container_title Circulation (New York, N.Y.)
container_volume 96
creator SWERDLOW, C. D
BREWER, J. E
KASS, R. M
KNOLL, M. W
description Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponential model gives the relationship for leading-edge current in terms of the membrane time constant (tau(m)). We hypothesized that these models predict results of clinical studies of ICD capacitance if human time constants are used. We studied 12 patients with epicardial ICDs and 15 patients with transvenous ICDs. Defibrillation threshold (DFT) was determined for 120-microF monophasic capacitive-discharge pulses at pulse widths of 1.5, 3.0, 7.5, and 15 ms. To compare the predictions of the average-current versus leading-edge-current methods, we derived a new exponential average-current model. We then calculated individual patient time parameters for each model. Model predictions were validated by retrospective comparison with clinical crossover studies of small-capacitor and standard-capacitor waveforms. All three models provided a good fit to the data (r2=.88 to .97, P
doi_str_mv 10.1161/01.CIR.96.9.2813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79434376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79434376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-9ae2c0c566189d2fb81eadbf696bb4bc4ecb2b2a2d47287043bc7ef66e4192da3</originalsourceid><addsrcrecordid>eNpdUMtKJDEUDYOirTN7N0ItxF3V5FVJxZ00PhoaBBnX4SaVjJGqSlmpXow_ML9tmm4acXUf58G9B6ELgitCBPmNSbVcPVdKVKqiDWE_0ILUlJe8ZuoILTDGqpSM0lN0ltJbHgWT9Qk6UawRhLMF-n87jl2wMIc4FNEXfWxdl7Zd63wwU-i6HTbH4nXTw_B938IMN8WqP7ikwsepiOMc-vARhr9FyBgMM5jOfRVnkoURbJhhsO4nOvbQJfdrX8_Ry_3dn-VjuX56WC1v16VlRM6lAkcttrUQpFEt9aYhDlrjhRLGcGO5s4YaCrTlkjYSc2asdF4Ix4miLbBzdL3zHaf4vnFp1n1I1uWDBhc3SUvFGWdSZCLeEe0UU5qc1-MUepj-aYL1NnuNic7ZayW00tvss-Ry770xvWsPgn3YGb_a45AsdH7Kj4d0oFEscC0k-wT2DJCD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79434376</pqid></control><display><type>article</type><title>Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>SWERDLOW, C. D ; BREWER, J. E ; KASS, R. M ; KNOLL, M. W</creator><creatorcontrib>SWERDLOW, C. D ; BREWER, J. E ; KASS, R. M ; KNOLL, M. W</creatorcontrib><description><![CDATA[Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponential model gives the relationship for leading-edge current in terms of the membrane time constant (tau(m)). We hypothesized that these models predict results of clinical studies of ICD capacitance if human time constants are used. We studied 12 patients with epicardial ICDs and 15 patients with transvenous ICDs. Defibrillation threshold (DFT) was determined for 120-microF monophasic capacitive-discharge pulses at pulse widths of 1.5, 3.0, 7.5, and 15 ms. To compare the predictions of the average-current versus leading-edge-current methods, we derived a new exponential average-current model. We then calculated individual patient time parameters for each model. Model predictions were validated by retrospective comparison with clinical crossover studies of small-capacitor and standard-capacitor waveforms. All three models provided a good fit to the data (r2=.88 to .97, P<.001). Time constants were lower for transvenous pathways (53+/-7 omega) than epicardial pathways (36+/-6 omega) (t(c), P<.001; average-current tau(m), P=.002; leading-edge-current tau(m), P<.06). For epicardial pathways, optimal capacitance was greater for either average-current model than for the leading-edge-current model (P<.001). For transvenous pathways, optimal capacitance differed for all three models (P<.001). All models provided a good correlation with the effect of capacitance on DFT in previous clinical studies: r2=.75 to .84, P<.003. For 90-microF, 120-microF, and 150-microF capacitors, predicted stored-energy DFTs were 3% to 8%, 8% to 16%, and 14% to 26% above that for the optimal capacitance. Model predictions based on measured human cardiac-muscle time parameter have a good correlation with clinical studies of ICD capacitance. Most of the predicted reduction in DFT can be achieved with approximately 90-microF capacitors.]]></description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/01.CIR.96.9.2813</identifier><identifier>PMID: 9386143</identifier><identifier>CODEN: CIRCAZ</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Biological and medical sciences ; Defibrillators, Implantable ; Diseases of the cardiovascular system ; Electric Conductivity ; Electric Countershock ; Humans ; Medical sciences ; Models, Biological ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><ispartof>Circulation (New York, N.Y.), 1997-11, Vol.96 (9), p.2813-2822</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-9ae2c0c566189d2fb81eadbf696bb4bc4ecb2b2a2d47287043bc7ef66e4192da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2060567$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9386143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SWERDLOW, C. D</creatorcontrib><creatorcontrib>BREWER, J. E</creatorcontrib><creatorcontrib>KASS, R. M</creatorcontrib><creatorcontrib>KNOLL, M. W</creatorcontrib><title>Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description><![CDATA[Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponential model gives the relationship for leading-edge current in terms of the membrane time constant (tau(m)). We hypothesized that these models predict results of clinical studies of ICD capacitance if human time constants are used. We studied 12 patients with epicardial ICDs and 15 patients with transvenous ICDs. Defibrillation threshold (DFT) was determined for 120-microF monophasic capacitive-discharge pulses at pulse widths of 1.5, 3.0, 7.5, and 15 ms. To compare the predictions of the average-current versus leading-edge-current methods, we derived a new exponential average-current model. We then calculated individual patient time parameters for each model. Model predictions were validated by retrospective comparison with clinical crossover studies of small-capacitor and standard-capacitor waveforms. All three models provided a good fit to the data (r2=.88 to .97, P<.001). Time constants were lower for transvenous pathways (53+/-7 omega) than epicardial pathways (36+/-6 omega) (t(c), P<.001; average-current tau(m), P=.002; leading-edge-current tau(m), P<.06). For epicardial pathways, optimal capacitance was greater for either average-current model than for the leading-edge-current model (P<.001). For transvenous pathways, optimal capacitance differed for all three models (P<.001). All models provided a good correlation with the effect of capacitance on DFT in previous clinical studies: r2=.75 to .84, P<.003. For 90-microF, 120-microF, and 150-microF capacitors, predicted stored-energy DFTs were 3% to 8%, 8% to 16%, and 14% to 26% above that for the optimal capacitance. Model predictions based on measured human cardiac-muscle time parameter have a good correlation with clinical studies of ICD capacitance. Most of the predicted reduction in DFT can be achieved with approximately 90-microF capacitors.]]></description><subject>Biological and medical sciences</subject><subject>Defibrillators, Implantable</subject><subject>Diseases of the cardiovascular system</subject><subject>Electric Conductivity</subject><subject>Electric Countershock</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUMtKJDEUDYOirTN7N0ItxF3V5FVJxZ00PhoaBBnX4SaVjJGqSlmpXow_ML9tmm4acXUf58G9B6ELgitCBPmNSbVcPVdKVKqiDWE_0ILUlJe8ZuoILTDGqpSM0lN0ltJbHgWT9Qk6UawRhLMF-n87jl2wMIc4FNEXfWxdl7Zd63wwU-i6HTbH4nXTw_B938IMN8WqP7ikwsepiOMc-vARhr9FyBgMM5jOfRVnkoURbJhhsO4nOvbQJfdrX8_Ry_3dn-VjuX56WC1v16VlRM6lAkcttrUQpFEt9aYhDlrjhRLGcGO5s4YaCrTlkjYSc2asdF4Ix4miLbBzdL3zHaf4vnFp1n1I1uWDBhc3SUvFGWdSZCLeEe0UU5qc1-MUepj-aYL1NnuNic7ZayW00tvss-Ry770xvWsPgn3YGb_a45AsdH7Kj4d0oFEscC0k-wT2DJCD</recordid><startdate>19971104</startdate><enddate>19971104</enddate><creator>SWERDLOW, C. D</creator><creator>BREWER, J. E</creator><creator>KASS, R. M</creator><creator>KNOLL, M. W</creator><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19971104</creationdate><title>Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance</title><author>SWERDLOW, C. D ; BREWER, J. E ; KASS, R. M ; KNOLL, M. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-9ae2c0c566189d2fb81eadbf696bb4bc4ecb2b2a2d47287043bc7ef66e4192da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Biological and medical sciences</topic><topic>Defibrillators, Implantable</topic><topic>Diseases of the cardiovascular system</topic><topic>Electric Conductivity</topic><topic>Electric Countershock</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SWERDLOW, C. D</creatorcontrib><creatorcontrib>BREWER, J. E</creatorcontrib><creatorcontrib>KASS, R. M</creatorcontrib><creatorcontrib>KNOLL, M. W</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SWERDLOW, C. D</au><au>BREWER, J. E</au><au>KASS, R. M</au><au>KNOLL, M. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>1997-11-04</date><risdate>1997</risdate><volume>96</volume><issue>9</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><coden>CIRCAZ</coden><abstract><![CDATA[Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponential model gives the relationship for leading-edge current in terms of the membrane time constant (tau(m)). We hypothesized that these models predict results of clinical studies of ICD capacitance if human time constants are used. We studied 12 patients with epicardial ICDs and 15 patients with transvenous ICDs. Defibrillation threshold (DFT) was determined for 120-microF monophasic capacitive-discharge pulses at pulse widths of 1.5, 3.0, 7.5, and 15 ms. To compare the predictions of the average-current versus leading-edge-current methods, we derived a new exponential average-current model. We then calculated individual patient time parameters for each model. Model predictions were validated by retrospective comparison with clinical crossover studies of small-capacitor and standard-capacitor waveforms. All three models provided a good fit to the data (r2=.88 to .97, P<.001). Time constants were lower for transvenous pathways (53+/-7 omega) than epicardial pathways (36+/-6 omega) (t(c), P<.001; average-current tau(m), P=.002; leading-edge-current tau(m), P<.06). For epicardial pathways, optimal capacitance was greater for either average-current model than for the leading-edge-current model (P<.001). For transvenous pathways, optimal capacitance differed for all three models (P<.001). All models provided a good correlation with the effect of capacitance on DFT in previous clinical studies: r2=.75 to .84, P<.003. For 90-microF, 120-microF, and 150-microF capacitors, predicted stored-energy DFTs were 3% to 8%, 8% to 16%, and 14% to 26% above that for the optimal capacitance. Model predictions based on measured human cardiac-muscle time parameter have a good correlation with clinical studies of ICD capacitance. Most of the predicted reduction in DFT can be achieved with approximately 90-microF capacitors.]]></abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>9386143</pmid><doi>10.1161/01.CIR.96.9.2813</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 1997-11, Vol.96 (9), p.2813-2822
issn 0009-7322
1524-4539
language eng
recordid cdi_proquest_miscellaneous_79434376
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Biological and medical sciences
Defibrillators, Implantable
Diseases of the cardiovascular system
Electric Conductivity
Electric Countershock
Humans
Medical sciences
Models, Biological
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
title Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20models%20of%20defibrillation%20to%20human%20defibrillation%20data:%20Implications%20for%20optimizing%20implantable%20defibrillator%20capacitance&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=SWERDLOW,%20C.%20D&rft.date=1997-11-04&rft.volume=96&rft.issue=9&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=0009-7322&rft.eissn=1524-4539&rft.coden=CIRCAZ&rft_id=info:doi/10.1161/01.CIR.96.9.2813&rft_dat=%3Cproquest_cross%3E79434376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79434376&rft_id=info:pmid/9386143&rfr_iscdi=true