Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance
Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponen...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 1997-11, Vol.96 (9), p.2813-2822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical models predict that optimal capacitance for implantable cardioverter-defibrillators (ICDs) is proportional to the time-dependent parameter of the strength-duration relationship. The hyperbolic model gives this relationship for average current in terms of the chronaxie (t(c)). The exponential model gives the relationship for leading-edge current in terms of the membrane time constant (tau(m)). We hypothesized that these models predict results of clinical studies of ICD capacitance if human time constants are used.
We studied 12 patients with epicardial ICDs and 15 patients with transvenous ICDs. Defibrillation threshold (DFT) was determined for 120-microF monophasic capacitive-discharge pulses at pulse widths of 1.5, 3.0, 7.5, and 15 ms. To compare the predictions of the average-current versus leading-edge-current methods, we derived a new exponential average-current model. We then calculated individual patient time parameters for each model. Model predictions were validated by retrospective comparison with clinical crossover studies of small-capacitor and standard-capacitor waveforms. All three models provided a good fit to the data (r2=.88 to .97, P |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.CIR.96.9.2813 |