Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes
Previous studies have shown that differentiation of 3T3-L1 preadipocytes leads to the transcriptional activation of a group of adipose-specific genes. As an approach to defining the mechanism responsible for activating the expression of these genes, we investigated the binding of nuclear factors to...
Gespeichert in:
Veröffentlicht in: | Genes & development 1989-09, Vol.3 (9), p.1323-1335 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have shown that differentiation of 3T3-L1 preadipocytes leads to the transcriptional activation of a group of adipose-specific genes. As an approach to defining the mechanism responsible for activating the expression of these genes, we investigated the binding of nuclear factors to the promoters of two differentiation-induced genes, the 422(aP2) and stearoyl-CoA desaturase 1 (SCD1) genes. DNase I footprinting and gel retardation analysis identified two binding regions within the promoters of each gene that interact with nuclear factors present in differentiated 3T3-L1 adipocytes. One differentiation-induced nuclear factor interacts specifically with a single binding site in the promoter of each gene. Competition experiments showed that the interaction of this nuclear factor with the SCD1 promoter was prevented specifically by a synthetic oligonucleotide corresponding to the site footprinted in the 422(aP2) promoter. Several lines of evidence indicate that the differentiation-induced nuclear factor is CCAAT/enhancer binding protein (C/EBP), a DNA-binding protein first isolated from rat liver. Bacterially expressed recombinant C/EBP binds to the same site at which the differentiation-specific nuclear factor interacts within the promoter of each gene. Northern analysis with RNA from 3T3-L1 cells shows that C/EBP mRNA abundance increases markedly during differentiation. Transient cotransfection studies using a C/EBP expression vector demonstrate that C/EBP can function as a trans-activator of both the 422(aP2) and SCD1 gene promoters. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.3.9.1323 |