DNA replication asynchrony between the paternal and maternal alleles of imprinted genes does not straddle the R/G transition

Imprinted autosomal loci apparently reside in very large chromosomal domains that exhibit asynchrony in replication of homologous alleles during the DNA synthesis phase. Replication asynchrony can be cytogenetically visualized by a replication-banding discordance between homologous bands of a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 1997-11, Vol.106 (6), p.405-411
Hauptverfasser: Drouin, R, Boutouil, M, Fetni, R, Holmquist, G P, Scott, P, Richer, C L, Lemieux, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imprinted autosomal loci apparently reside in very large chromosomal domains that exhibit asynchrony in replication of homologous alleles during the DNA synthesis phase. Replication asynchrony can be cytogenetically visualized by a replication-banding discordance between homologous bands of a given pair of chromosomal homologs. The replication time of a chromosomal band at high resolution can be determined by blocking DNA synthesis at the R/G-band transition and using replication banding. The R/G transition reflects the transition from early (R-) to late (G- and C-) band DNA replication. We studied discordance between two groups of homologous chromosomal bands: (a) four bands, 6q26-27, 11p13, 11p15.5 and 15q11.2-12, each containing at least one imprinted gene; and (b) nine bands containing no known imprinted genes. Fifty pairs of chromosomes were analyzed at high resolution after R/G transition blocking and late 5-bromo-2'-deoxyuridine incorporation. The rate of discordance was the same for bands containing imprinted genes and for control bands. Both homologous bands of a pair replicate either before or after the R/G transition and do not straddle the R/G transition. Repression associated with imprinting does not appear to involve late replication at the band level of resolution. Tissue-specific inactivation is associated with DNA methylation and late replication, whereas allele-specific inactivation is associated with DNA methylation but not with delayed or late replication.
ISSN:0009-5915
1432-0886
DOI:10.1007/s004120050262