Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester

Bacteria employ autoinduction systems to sense the onset of appropriate cell density for expression of developmental genes. In many gram-negative bacteria, autoinduction involves the production of and response to diffusible acylated-homoserine lactones (acyl-HSLs) and is mediated by members of the L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bacteriology 1997-11, Vol.179 (22), p.7089-7097
Hauptverfasser: Flavier, A.B, Ganova-Raeva, L.M, Schell, M.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacteria employ autoinduction systems to sense the onset of appropriate cell density for expression of developmental genes. In many gram-negative bacteria, autoinduction involves the production of and response to diffusible acylated-homoserine lactones (acyl-HSLs) and is mediated by members of the LuxR and LuxI families. Ralstonia (Pseudomonas) solanacearum, a phytopathogenic bacterium that appears to autoregulate its virulence genes, produces compounds that promote expression of several heterologous acyl-HSL-responsive reporter gene constructs. High-pressure liquid chromatography of highly concentrated ethyl acetate extracts revealed that culture supernatants of strain AW1 contained two compounds with retention times similar to N-hexanoyl- and N-octanoyl-HSL. To investigate the role of these acyl-HSLs in R. solanacearum virulence gene expression, transposon mutants that were deficient for inducing an acyl-HSL-responsive reporter in Agrobacterium tumefaciens were generated. Three loci involved in normal acyl-HSL production were identified, one of which was shown to contain the divergently transcribed solR and solI genes, the luxR and luxI homologs, respectively. A 4.1-kb fragment containing solR and solI enabled all of the mutants (regardless of the locus inactivated) and a naturally acyl-HSL-defective strain of R. solanacearum to produce acyl-HSls. Inactivation of solI abolished production of all detectable acyl-HSLs but affected neither the expression of virulence genes in culture nor the ability to wilt tomato plants. AW1 has a functional autoinduction system, because (i) expression of solI required SolR and acyl-HSL and (ii) expression of a gene linked to solR and solI, designated aidA, was acyl-HSL dependent. Because AidA has no homologs in the protein databases, its discovery provided no clues as to the role of acyl-HSLs in R. solanacearum gene regulation
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.179.22.7089-7097.1997