Kinetics of high-affinity K + uptake in plants, derived from K + -induced changes in current-voltage relationships: A modelling approach to the analysis of carrier-mediated transport

To investigate coupled, charge-translocating transport, it is imperative that the specific transporter current-voltage (IV) relationship of the transporter is separated from the overall membrane IV relationship. We report here a case study in which the currents mediated by the K+-H+ symporter, respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1997-10, Vol.203 (2), p.229-236
Hauptverfasser: Maathuis, Frans J.M., Sanders, Dale, Gradmann, Dietrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate coupled, charge-translocating transport, it is imperative that the specific transporter current-voltage (IV) relationship of the transporter is separated from the overall membrane IV relationship. We report here a case study in which the currents mediated by the K+-H+ symporter, responsible for high-affinity K+ uptake in Arabidopsis thaliana (L.) Heynh. cv. Columbia roots, are analyzed with an enzyme kinetic reaction scheme. The model explicitly incorporates changes in membrane voltage and external substrate, and enables the derivation of the underlying symport IV relationships from the experimentally obtained difference IV data. Data obtained for high-affinity K+ transport in A. thaliana root protoplasts were best described by a 1:1 coupled K+-H+ symport-mediated current with a parallel, outward non-linear K+ pathway. Furthermore, the large predictive value of the model was used to describe symport behaviour as a function of the external K+ concentration and the cytoplasmic K+ concentration. Symport activity is a complex function of the external K+ concentration, with first-order saturating kinetics in the micromolar range and a strong activity reduction when external K+ is in the millimolar range and the membrane depolarises. High cytoplasmic K+ levels inhibit symport activity. These responses are suggested to be part of the feedback mechanisms to maintain cellular K+ homeostasis. The general suitability of the model for analysis of carrier-mediated transport is discussed.
ISSN:0032-0935
1432-2048
DOI:10.1007/s004250050186