Tissue Factor Expression by Cells Used for Sodding of Prosthetic Vascular Grafts

Sodding of vascular grafts involves coating the biomaterial with cells prepared from collagenase-digested fat tissue after removal of the adipocytes by centrifugation. The goal of this study was to investigate the staining characteristics of the sodding cells as well as their ability to express the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 1997-09, Vol.72 (1), p.22-28
Hauptverfasser: Rubens, F.D., Labow, R.S., Meek, E., Dudani, A.K., Ganz, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodding of vascular grafts involves coating the biomaterial with cells prepared from collagenase-digested fat tissue after removal of the adipocytes by centrifugation. The goal of this study was to investigate the staining characteristics of the sodding cells as well as their ability to express the procoagulant protein tissue factor, and to compare these findings to those found with extensively purified microvascular endothelial cells (MEC) prepared from similar tissue. Sodding cells and MEC, isolated using immunomagnetic separation with anti-PECAM antibodies, were prepared from liposuction material and endothelial-specific staining was compared. The expression of tissue factor on these cells was examined using both an ELISA and a chromogenic assay to assess the rate of generation of factor Xa. Sodding cells expressed significantly more tissue factor than the unstimulated MEC in which the expression was undetectable (sodding cells 2466 ± 830 pg/mL,P< 0.05). There was no further increase in tissue factor expression in the sodding cells with stimulation with lipopolysaccharide (LPS); however, purified MEC expressed significantly more tissue factor after exposure to LPS (1247 ± 356 pg/mL,P< 0.05). These results were confirmed by the determination of procoagulant activity of the cells whereby the procoagulant activity on unstimulated MEC was significantly less than that found after stimulation of these cells, and it was also less than stimulated and unstimulated sodding cells (absorbance at 405 nm: 0.423 ± 0.125, unstimulated MEC; 1.000 ± 0.438, stimulated MEC; 1.129 ± 0.396, unstimulated sodding cells; 1.171 ± 0.254, stimulated sodding cells,P< 0.05). Staining of these two cell types also demonstrated significant uptake of acetylated LDL (Ac-LDL) in the purified MEC which was essentially absent in the sodding cells. Further, vWf staining was found to a greater degree in the purified MEC than in the sodding cells. These experiments demonstrated that the cells prepared for cell sodding express large amounts of tissue factor. The sodding cells do not stain for antigens known to be specific for endothelial cells, whereas MEC do and therefore the concentration of endothelial cells in the sodding cells is small. The significance of the tissue factor expression on the surface of sodded grafts is not yet known.
ISSN:0022-4804
1095-8673
DOI:10.1006/jsre.1997.5149