Irreversible inhibition of rat hepatic glutathione S-transferase isoenzymes by a series of structurally related quinones

The effect of several structurally related 1,4-benzoquinones (BQ) and 1,4-naphthoquinones (NQ) on the activity of rat hepatic glutathione S-transferases (GST) was studied. For the 1,4-benzoquinones, the extent of inhibition increased with an increasing number of halogen substituents. Neither the typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 1989, Vol.71 (4), p.381-392
Hauptverfasser: Vos, Ria M.E., Van Ommen, Ben, Hoekstein, Mark S.J., De Goede, Jolanda H.M., Van Bladeren, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of several structurally related 1,4-benzoquinones (BQ) and 1,4-naphthoquinones (NQ) on the activity of rat hepatic glutathione S-transferases (GST) was studied. For the 1,4-benzoquinones, the extent of inhibition increased with an increasing number of halogen substituents. Neither the type of halogen nor the position of chlorine-atoms was of major importance. Similarly, 2,3-dichloro-NQ demonstrated a considerably higher inhibitory activity than 5-hydroxy-NQ. 2-Methyl derivatives of NQ did not inhibit GST activity at all. The irreversible nature of the inhibition was shown both by the time-course of the inhibition as well as by the fact that removal of the inhibitor by ultrafiltration did not restore the enzymatic activity. Incubation of quinones and enzyme in the presence of the competitive inhibitor S-hexylglutathione, slowed the inhibition considerably, indicating an involvement of the active site. Isoenzyme 3-3 was found to be most sensitive towards the whole series of inhibitors, whereas the activity of isoenzyme 2-2 was least affected in all cases. The inhibition by quinones is probably mainly due to covalent modification of a specific cysteine residue in or near the active site. The differential sensitivities of individual isoenzymes indicates that this residue is more accessible and/or easier modified in isoenzyme 3-3 than in any of the other isoenzymes tested. The findings suggest that quinones form a class of compounds from which a selective in vivo inhibitor of the GST might be developed.
ISSN:0009-2797
1872-7786
DOI:10.1016/0009-2797(89)90112-9