Visualization of elongation factor Tu on the Escherichia coli ribosome
The delivery of a specific amino acid to the translating ribosome is fundamental to protein synthesis. The binding of aminoacyl-transfer RNA to the ribosome is catalysed by the elongation factor Tu (EF-Tu). The elongation factor, the aminoacyl-tRNA and GTP form a stable 'ternary' complex t...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1997-09, Vol.389 (6649), p.403-406 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The delivery of a specific amino acid to the translating ribosome is fundamental to protein synthesis. The binding of aminoacyl-transfer RNA to the ribosome is catalysed by the elongation factor Tu (EF-Tu). The elongation factor, the aminoacyl-tRNA and GTP form a stable 'ternary' complex that binds to the ribosome. We have used electron cryomicroscopy and angular reconstitution to visualize directly the kirromycin-stalled ternary complex in the A site of the 70S ribosome of Escherichia coli. Electron cryomicroscopy had previously given detailed ribosomal structures at 25 and 23 Å (refs 2, 3) resolution, and was used to determine the position of tRNAs on the ribosome. In particular, the structures of pre-translocational (tRNAs in A and P sites) and post-translocational ribosomes (P and E sites occupied) were both visualized at a resolution of ∼20 Å. Our three-dimensional reconstruction at 18 Å resolution shows the ternary complex spanning the inter-subunit space with the acceptor domain of the tRNA reaching into the decoding centre. Domain 1 (the G domain) of the EF-Tu is bound both to the L7/L12 stalk and to the 50S body underneath the stalk, whereas domain 2 is oriented towards the S12 region on the 30S subunit. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/38770 |