Protein Crystal Growth in Microgravity

The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1989-11, Vol.246 (4930), p.651-654
Hauptverfasser: DeLucas, Lawrence J., Smith, Craig D., Smith, H. Wilson, Vijay-Kumar, Senadhi, Senadhi, Shobha E., Ealick, Steven E., Carter, Daniel C., Snyder, Robert S., Weber, Patricia C., Salemme, F. Raymond, Ohlendorf, D. H., Einspahr, H. M., Clancy, L. L., Navia, Manuel A., McKeever, Brian M., Nagabhushan, T. L., Nelson, George, McPherson, A., Koszelak, S., Taylor, G., Stammers, D., Powell, K., Darby, G., Bugg, Charles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. space shuttle flight STS-26 in September 1988. The microgravity-grown crystals of $\gamma $-interferon D$^{1}$, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on Earth.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.2510297