A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1
Pbx1 is a homeodomain transcription factor that has the ability to form heterodimers with homeodomain proteins encoded by the homeotic selector (Hox) gene complexes and increase their DNA-binding affinity and specificity. A current hypothesis proposes that interactions with Pbx1 are necessary for Ho...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 1997-09, Vol.124 (17), p.3221-3232 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pbx1 is a homeodomain transcription factor that has the ability to form heterodimers with homeodomain proteins encoded by the homeotic selector (Hox) gene complexes and increase their DNA-binding affinity and specificity. A current hypothesis proposes that interactions with Pbx1 are necessary for Hox proteins to regulate downstream target genes that in turn control growth, differentiation and morphogenesis during development. In pre B cell leukemias containing the t(1;19) chromosome translocation, Pbx1 is converted into a strong transactivator by fusion to the activation domain of the bHLH transcription factor E2A. The E2A-Pbx1 fusion protein should therefore activate transcription of genes normally regulated by Pbx1. We have used the subtractive process of representational difference analysis to identify targets of E2A-Pbx1. We show that E2A-Pbx1 can directly activate transcription of a novel member of the fibroblast growth factor family of intercellular signalling molecules, FGF-15. The FGF-15 gene is expressed in a regionally restricted pattern in the developing nervous system, suggesting that FGF-15 may play an important role in regulating cell division and patterning within specific regions of the embryonic brain, spinal cord and sensory organs. |
---|---|
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.124.17.3221 |