Conformational changes in an epitope localized to the NH2-terminal region of protein C. Evidence for interaction of protein C domains
Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies that bound to protein C only in the presence of EDTA....
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1989-11, Vol.264 (31), p.18781-18788 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability
to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies
that bound to protein C only in the presence of EDTA. All three antibodies bound to the light chain of protein C on immunoblots
and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10
was purified and studied further. The binding of 7D7B10 to human protein C was characterized by a KD of 1.4 nM. In competition
studies, it was found that the relative affinity of the antibody for protein C was 20-40-fold higher than for prothrombin,
fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor IX or bovine protein C. The effect
of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced
the formation of the protein C-antibody complex with half-maximal effect occurring at approximately 60 microM metal ion. However,
higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K0.5 of 1.1 mM. Furthermore, millimolar
concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope
was delineated by immunoblotting and peptide studies and found to be present in the NH2-terminal 15 residues of protein C.
Although residues corresponding to positions 10-13 of human protein C were necessary for maximal binding of the antibody,
they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the
effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likely
that Ca2+ occupation of a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes
a conformational change in the NH2-terminal region of protein C which is favorable for antibody interaction, whereas Ca2+
binding to the low affinity site(s), known to be present in the gamma-carboxyglutamic acid domain, causes an unfavorable conformational
change. |
---|---|
ISSN: | 0021-9258 1083-351X |