Computational Methods for the Identification of Genes in Vertebrate Genomic Sequences
Research into new methods to identify genes in anonymous genomic sequences has been going on for more than 15 years. Over this period of time, the field has evolved from the designing of programs to identify protein coding regions in compact mitochondrial or bacterial genomes, to the challenge of pr...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 1997-01, Vol.6 (10), p.1735-1744 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research into new methods to identify genes in anonymous genomic sequences has been going on for more than 15 years. Over this period of time, the field has evolved from the designing of programs to identify protein coding regions in compact mitochondrial or bacterial genomes, to the challenge of predicting the detailed organization of multi-exon vertebrate genes. The best program currently available perfectly locates more than 80% of the internal coding exons, and only 5% of the predictions do not overlap a real exon. Given such accuracy, computational methods are indeed very useful; however, they do not alleviate the need for experimental validation. If the performances are satisfactory for the identification of the coding moiety of genes (internal coding exons), the determination of the full extent of the transcript (5′ and 3′ extremities of the gene) and the location of promoter regions are still unreliable. As the human and mouse genome sequencing projects enter a production mode, the fully automated annotation of megabase-long anonymous genomic sequences is the next big challenge in bioinformatics. |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/6.10.1735 |