Oligomerization of Expanded-Polyglutamine Domain Fluorescent Fusion Proteins in Cultured Mammalian Cells
Six inherited neurologic diseases, including Huntington's disease, result from the expansion of a CAG domain of the disease genes to produce a domain of more than 40 glutamines in the expressed protein. The mechanism by which expansion of this polyglutamine domain causes disease is unknown. Rec...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1997-09, Vol.238 (2), p.599-605 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Six inherited neurologic diseases, including Huntington's disease, result from the expansion of a CAG domain of the disease genes to produce a domain of more than 40 glutamines in the expressed protein. The mechanism by which expansion of this polyglutamine domain causes disease is unknown. Recent studies demonstrated oligomerization of polyglutamine-domain proteins in mammalian neurons. To study oligomerization of polyglutamine proteins and to identify heterologous protein interactions, varying length polyglutamine-green fluorescent protein fusion proteins were expressed in cultured COS-7 cells. The 19- and 35-glutamine fusion proteins (non-pathologic length) distributed diffusely throughout the cytoplasm. In contrast, 56- and 80-glutamine fusion proteins (pathologic length) formed fibrillar arrays resembling those previously observed in neurons in Huntington's disease and in a transgenic mouse model. These aggregates were intranuclear and intracytoplasmic. Intracytoplasmic aggregates were surrounded by collapsed intermediate filaments. The intermediate filament protein vimentin co-immunoisolated with expanded polyglutamine fusion proteins. This cellular model will expedite investigations into oligomerization of polyglutamine proteins and their interactions with other proteins. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.1997.7337 |