Evaluation of the three-dimensional clinostat as a simulator of weightlessness

Concerns regarding the reliability of slow-and fast-rotating uni-axial clinostats in simulating weightlessness have induced the construction of devices considered to simulate weightlessness more adequately. A new three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1997-01, Vol.203 (S1), p.S187-S197
Hauptverfasser: Hoson, T, Kamisaka, S, Masuda, Y, Yamashita, M, Buchen, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concerns regarding the reliability of slow-and fast-rotating uni-axial clinostats in simulating weightlessness have induced the construction of devices considered to simulate weightlessness more adequately. A new three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles has been constructed. In the clinostat, the rotation achieved with two motors is computer-controlled and monitored with encoders attached to the motors. By rotating plants three-dimensionally at random rates on the clinostat, their dynamic stimulation by gravity in every direction can be eliminated. Some of the vegetative growth phases of plants dependent on the gravity vector, such as morphogenesis, are shown to be influenced by rotation on the 3-D clinostat. The validity of 3-D clinostatting has been evaluated by comparing structural parameters of cress roots and Chara rhizoids obtained under real microgravity with those obtained after 3-D clinostatting. The parameters analyzed up to now (organization of the root cap, integrity and polarity of statocytes, dislocation of statoliths, amount of starch and ER) demonstrate that the 3-D clinostat is a valuable device for simulating weightlessness.
ISSN:0032-0935
1432-2048
DOI:10.1007/pl00008108