A test of missing completely at random for longitudinal data with missing observations
Liang and Zeger proposed a generalized estimating equations approach to the analysis of longitudinal data. Their models assume that missing observations are missing completely at random in the sense of Rubin. However, when this assumption does not hold, their analysis may yield biased results. In th...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 1997-08, Vol.16 (16), p.1859-1871 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liang and Zeger proposed a generalized estimating equations approach to the analysis of longitudinal data. Their models assume that missing observations are missing completely at random in the sense of Rubin. However, when this assumption does not hold, their analysis may yield biased results. In this paper, we develop a simple and practical procedure for testing this assumption. The proposed procedure is related to that of Park and Davis. © 1997 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0277-6715 1097-0258 |
DOI: | 10.1002/(SICI)1097-0258(19970830)16:16<1859::AID-SIM593>3.0.CO;2-3 |