Myosin I is located at the leading edges of locomoting Dictyostelium amoebae

Movement of a eukaryotic cell along a substrate occurs by extension of lamellipodia and pseudopodia at the anterior and retraction at the posterior of the cell. The molecular and structural mechanisms of these movements are uncertain. Dictyostelium discoideum contains two forms of myosin. Here we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1989-09, Vol.341 (6240), p.328-331
Hauptverfasser: Fukui, Y, Chicago, IL, Lynch, T.J, Brzeska, H, Korn, E.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Movement of a eukaryotic cell along a substrate occurs by extension of lamellipodia and pseudopodia at the anterior and retraction at the posterior of the cell. The molecular and structural mechanisms of these movements are uncertain. Dictyostelium discoideum contains two forms of myosin. Here we show by immunofluorescence microscopy that non-filamentous myosin I occurs at the leading edges of the lamellipodial projections of migrating Dictyostelium amoebae, which are devoid of myosin II, whereas filamentous myosin II is concentrated in the posterior of the cells. On the basis of these locations of the two forms of myosin and their known biochemical and biophysical properties, we suggest that actomyosin I may contributed to the forces that cause extension at the leading edge of a motile cell, while the contraction of actomyosin II at the rear squeezes the cell mass forward. Myosin I isozymes might have similar roles in metazoan cells, for example at the leading edges of neuronal growth cones, and in the extension of lamellipodia and pseudopodia of leukocytes, macrophages and fibroblasts.
ISSN:0028-0836
1476-4687
DOI:10.1038/341328a0