Exocytotic release from neuronal cell bodies, dendrites and nerve terminals in sympathetic ganglia of the rat, and its differential regulation

Stimulant-induced exocytosis has been demonstrated in sympathetic ganglia of the rat by in vitro incubation of excised ganglia in the presence of tannic acid, which stabilizes vesicle cores after their exocytotic release. Sites of exocytosis were observed along non-synaptic regions of the surfaces o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1997-10, Vol.80 (3), p.861-891
Hauptverfasser: Zaidi, Z.F, Matthews, M.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stimulant-induced exocytosis has been demonstrated in sympathetic ganglia of the rat by in vitro incubation of excised ganglia in the presence of tannic acid, which stabilizes vesicle cores after their exocytotic release. Sites of exocytosis were observed along non-synaptic regions of the surfaces of neuron somata and dendrites, including regions of dendrosomatic and dendrodendritic apposition, as well as along the surfaces of nerve terminals. About half the exocytoses associated with nerve terminals were parasynaptic or synaptic, and these appeared mostly to arise from the presynaptic terminal, but occasionally from the postsynaptic element. The results demonstrated that the neurons of sympathetic ganglia release materials intraganglionically in response to stimulation, that release from different parts of the neuron is subject to independent regulation, at least via cholinergic receptors, and that release is partly diffuse, potentially mediating autocrine or paracrine effects, and partly targeted toward other neurons, but that the latter mode is not necessarily, and not evidently, synaptic. Specifically, exocytosis from all locations increased significantly during incubation in modified Krebs' solution containing 56 mM potassium. Observation of the effects of cholinergic agonists (nicotine, carbachol, oxotremorine) and antagonists (atropine, AF-DX 116) showed that nicotinic and muscarinic excitation each, independently, increased the incidence of exocytosis from somata and dendrites. Exocytosis from nerve endings was not altered by nicotine, but was enhanced or, at high initial rates of exocytosis, decreased, by muscarinic stimulation. Evidence was obtained for muscarinic auto-inhibition of exocytosis from nerve terminals, occurring under basal incubation conditions, and for a muscarinic excitatory component of somatic exocytosis, elicitable by endogenous acetylcholine. The M 2-selective muscarinic antagonist AF-DX 116 was found to modify the exocytotic response of the dendrites to oxotremorine, widening the range of its variation; this effect is consistent with recent evidence for the presence of M 2-like muscarinic binding sites, in addition to M 1-like binding, upon these dendrites. [88] Over all conditions, disproportionately more sites of somatic and dendritic exocytosis were found to be located in regions of dendrosomatic and dendrodendritic apposition than would be expected from the relative extent of the neuronal surface occupied by these relatio
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(96)00664-1