Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4-cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets

The effects of 2-[(4-acetylphenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15), a synthetic 1,4-naphthoquinone derivative, on platelet activity and its mechanism of action were investigated. NQ-Y15 caused a concentration-dependent inhibition of the aggregation induced by thrombin, collagen, arachid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 1997-07, Vol.54 (2), p.259-268
Hauptverfasser: CHANG, T.-S, KIM, H.-M, LEE, K.-S, KHIL, L.-Y, MAR, W.-C, RYU, C.-K, MOON, C.-K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of 2-[(4-acetylphenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15), a synthetic 1,4-naphthoquinone derivative, on platelet activity and its mechanism of action were investigated. NQ-Y15 caused a concentration-dependent inhibition of the aggregation induced by thrombin, collagen, arachidonic acid (AA), and A23187. The IC50 values of NQ-Y15 on thrombin (0.1 U/mL)-, collagen (10 microg/mL)-, AA (50 microM)-, and A23187 (2 microM)-induced aggregation were 36.2 +/- 1.5, 6.7 +/- 0.7, 35.4 +/- 1.7, and 93.1 +/- 1.4 microM, respectively. NQ-Y15 also inhibited thrombin-, collagen-, AA-, and A23187-stimulated serotonin secretion in a concentration-dependent manner. However, a high concentration (100 microM) of NQ-Y15 showed no significant inhibitory effect on ADP-induced primary aggregation, which is independent of thromboxane A2 (TXA2) production in rat platelets. In fura-2-loaded platelets, the elevation of intracellular free calcium concentration stimulated by AA, thrombin, and 4-bromo-A23187 was inhibited by NQ-Y15 in a concentration-dependent manner. The formation of TXA2 caused by AA, thrombin, and collagen was inhibited significantly by NQ-Y15. NQ-Y15 inhibited TXA2 synthase in intact rat platelets, since this agent reduced the conversion of prostaglandin (PG) H2 to TXA2. Similarly, NQ-Y15 selectively inhibited the TXA2 synthase activity in human platelet microsomes, whereas it had no effect on activity of phospholipase A2, cyclooxygenase, and PGI2 synthase in vitro. NQ-Y15 inhibited platelet aggregation induced by the endoperoxide analogue U46619 in human platelets, indicating TXA2 receptor antagonism, possibly of a competitive nature. These results suggest that the antiplatelet effect of NQ-Y15 is due to a combination of TXA2 synthase inhibition with TXA2 receptor blockade, and that it may be useful as an antithrombotic agent.
ISSN:0006-2952
1873-2968
DOI:10.1016/s0006-2952(97)00179-2