Alteration of rat polymorphonuclear leukocyte function after thermal injury
One portion of host defense to bacterial challenge(s) involves the activation and infiltration of endogenous polymorphonuclear leukocytes. Thermal injuries are frequently associated with immunologic abnormalities including alterations of polymorphonuclear leukocyte-associated nonspecific resistance....
Gespeichert in:
Veröffentlicht in: | Journal of burn care & rehabilitation 1989-09, Vol.10 (5), p.394-401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One portion of host defense to bacterial challenge(s) involves the activation and infiltration of endogenous polymorphonuclear leukocytes. Thermal injuries are frequently associated with immunologic abnormalities including alterations of polymorphonuclear leukocyte-associated nonspecific resistance. We examined isolated peripheral rat polymorphonuclear leukocytes for alterations in membrane potential, oxidative capability, and locomotor function after the experimental application of 20% full-thickness body surface area thermal injury. Thermal injury resulted in significant reductions of peripheral red blood cell concentration(s) and increases in leukocyte and platelet concentrations for 42 days after injury. In addition to the quantitative changes, polymorphonuclear leukocytes also demonstrated altered qualitative functions. Compared with phorbol myristate acetate-induced activation of normal cells, polymorphonuclear leukocyte membranes from thermal-injured animals were electrophysiologically less responsive for 3 weeks after injury. The ability of polymorphonuclear leukocytes to produce intracellular H2O2, a measure of oxidative function, was also significantly decreased for 7 days after injury. The paradox in this paradigm of thermal injury was the demonstration of peripheral polymorphonuclear leukocyte quantitative increases with concurrent significant qualitative impairment. Qualitative lesions included altered states of membrane depolarization and depressed oxidative capability that may individually, or collectively, reduce nonspecific immune capabilities of the host to levels that are inadequate to combat infection. |
---|---|
ISSN: | 0273-8481 |
DOI: | 10.1097/00004630-198909000-00004 |