Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery

Recently the high transfection potential of the cationic polymer polyethylenimine (PEI) was described (Boussif O et al. Proc Natl Acad Sci USA 1995; 92: 7297-7301). To combine the promising DNA delivering activity of PEI with the concept of receptor-mediated gene delivery, cell-binding ligands (tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 1997-05, Vol.4 (5), p.409-418
Hauptverfasser: KIRCHEIS, R, KICHLER, A, WALLNER, G, KURSA, M, OGRIS, M, FELZMANN, T, BUCHBERGER, M, WAGNER, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently the high transfection potential of the cationic polymer polyethylenimine (PEI) was described (Boussif O et al. Proc Natl Acad Sci USA 1995; 92: 7297-7301). To combine the promising DNA delivering activity of PEI with the concept of receptor-mediated gene delivery, cell-binding ligands (transferrin or antiCD3 antibody) were incorporated by covalent linkage to PEI. DNA complexes of PEI or ligand-PEI conjugates were tested for transfection of cultured neuroblastoma Neuro 2A cells, melanoma B16 or H225 cells, erythroid leukemic K562 cells and T cell leukemia Jurkat E6.1 cells. Depending on the cell line, incorporation of the cell-binding ligand resulted in an up to 1000-fold increased transfection efficiency. This activity depends on ligand-receptor interaction and was observed also at low PEI cation:DNA anion ratios where ligand-free PEI lacks efficiency. Depending on the cell-binding ligand, specific targeting (CD3 antibody, Jurkat cells) can be achieved. Gene transfer can be augmented by the addition of an endosome-destabilizing influenza peptide, but is not dependent on the presence of additional endosomolytic agents. Application of transferrin-PEI for the production of murine interleukin-2 in B16 cells resulted in exceptionally high secretion rates of 19 micrograms IL-2 protein per 10(6) cells per 24 h.
ISSN:0969-7128
1476-5462
DOI:10.1038/sj.gt.3300418