Molecular evidence from retroposons that whales form a clade within even-toed ungulates

The origin of whales and their transition from terrestrial life to a fully aquatic existence has been studied in depth. Palaeontological, morphological and molecular studies suggest that the order Cetacea (whales, dolphins and porpoises) is more closely related to the order Artiodactyla (even-toed u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1997-08, Vol.388 (6643), p.666-670
Hauptverfasser: SHIMAMURA, M, YASUE, H, OHSHIMA, K, ABE, H, KATO, H, KISHIRO, T, GOTO, M, MUNECHIKA, I, OKADA, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of whales and their transition from terrestrial life to a fully aquatic existence has been studied in depth. Palaeontological, morphological and molecular studies suggest that the order Cetacea (whales, dolphins and porpoises) is more closely related to the order Artiodactyla (even-toed ungulates, including cows, camels and pigs) than to other ungulate orders. The traditional view that the order Artiodactyla is monophyletic has been challenged by molecular analyses of variations in mitochondrial and nuclear DNA. We have characterized two families of short interspersed elements (SINEs) that were present exclusively in the genomes of whales, ruminants and hippopotamuses, but not in those of camels and pigs. We made an extensive survey of retropositional events that might have occurred during the divergence of whales and even-toed ungulates. We have characterized nine retropositional events of a SINE unit, each of which provides phylogenetic resolution of the relationships among whales, ruminants, hippopotamuses and pigs. Our data provide evidence that whales, ruminants and hippopotamuses form a monophyletic group.
ISSN:0028-0836
1476-4687
DOI:10.1038/41759