Protein Structure-Based Design, Synthesis, and Biological Evaluation of 5-Thia-2,6-diamino-4(3H)-oxopyrimidines:  Potent Inhibitors of Glycinamide Ribonucleotide Transformylase with Potent Cell Growth Inhibition

The design, synthesis, biochemical, and biological evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1997-08, Vol.40 (16), p.2502-2524
Hauptverfasser: Varney, Michael D, Palmer, Cindy L, Romines, William H, Boritzki, Theodore, Margosiak, Stephen A, Almassy, Robert, Janson, Cheryl A, Bartlett, Charlotte, Howland, Eleanor J, Ferre, Rosanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design, synthesis, biochemical, and biological evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapyrimidinones were synthesized by coupling an alkyl thiol with 5-bromo-2,6-diamino-4(3H)-pyrimidinone, 20. The bicyclic compounds were prepared in both racemic and diastereomerically pure forms using two distinct synthetic routes. The compounds were found to have human GART K is ranging from 30 μM to 2 nM. The compounds inhibited the growth of both L1210 and CCRF-CEM cells in culture with potencies down to the low nanomolar range and were found to be selective for the de novo purine biosynthesis pathway. The most potent inhibitors had 2,5-disubstituted thiophene rings attached to the glutamate moiety. Placement of a methyl substituent at the 4-position of the thiophene ring to give compounds 10, 18, and 19 resulted in inhibitors with significantly decreased mFBP affinity.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm9607459