Identification of a cell cycle-dependent gene product as a sialic acid-binding protein
A Ca 2+-dependent sialic acid-binding protein was purified on fetuin-Sepharose from various types of human tissue. The molecular mass was determined to be 10,315 Da by laser desorption mass spectrometry. Partial sequence analysis after cyanogen bromide cleavage that yielded one N-terminus accessible...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1989-08, Vol.163 (1), p.506-512 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Ca
2+-dependent sialic acid-binding protein was purified on fetuin-Sepharose from various types of human tissue. The molecular mass was determined to be 10,315 Da by laser desorption mass spectrometry. Partial sequence analysis after cyanogen bromide cleavage that yielded one N-terminus accessible for Edman degradation revealed an identity to an internal stretch following the only methionine residue within a putative amino acid sequence (M
r 10,048), deduced from the cDNA of a cell cycle-specific gene. The reported biochemical identification is a prerequisite to infer the biological role of the so far undetected gene product. Initial glycohistochemical studies with sialic acid-(BSA-biotin) raised evidence for nuclear localization of sialic acid-binding sites that might reflect, at least in part, detection of this protein. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/0006-291X(89)92166-9 |