Osteoclastic Bone Resorption by a Polarized Vacuolar Proton Pump
Bone resorption depends on the formation, by osteoclasts, of an acidic extracellular compartment wherein matrix is degraded. The mechanism by which osteoclasts transport protons into that resorptive microenvironment was identified by means of adenosine triphosphate-dependent weak base accumulation i...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1989-08, Vol.245 (4920), p.855-857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone resorption depends on the formation, by osteoclasts, of an acidic extracellular compartment wherein matrix is degraded. The mechanism by which osteoclasts transport protons into that resorptive microenvironment was identified by means of adenosine triphosphate-dependent weak base accumulation in isolated osteoclast membrane vesicles, which exhibited substrate and inhibition properties characteristic of the vacuolar, electrogenic H$^{+}$-transporting adenosine triphosphatase(H$^{+}$-ATPase). Identity of the proton pump was confirmed by immunoblot of osteoclast membrane proteins probed with antibody to vacuolor H$^{+}$-ATPase isolated from bovine kidney. The osteoclast's H$^{+}$-ATPase was immunocytochemically localized to the cell-bone attachment site. Immunoelectron microscopy showed that the H$^{+}$-ATPase was present in the ruffled membrane, the resorptive organ of the cell. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.2528207 |