Effector Coupling Mechanisms of the Cloned 5-HT1A Receptor

The signal transduction pathways of the cloned human 5-HT1A receptor have been examined in two mammalian cell lines transiently (COS-7) or permanently (HeLa) expressing this receptor gene. In both systems, 5-hydroxytryptamine (5-HT, serotonin) mediated a marked inhibition of β2-adrenergic agonist-st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-09, Vol.264 (25), p.14848-14852
Hauptverfasser: Fargin, A, Raymond, J R, Regan, J W, Cotecchia, S, Lefkowitz, R J, Caron, M G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The signal transduction pathways of the cloned human 5-HT1A receptor have been examined in two mammalian cell lines transiently (COS-7) or permanently (HeLa) expressing this receptor gene. In both systems, 5-hydroxytryptamine (5-HT, serotonin) mediated a marked inhibition of β2-adrenergic agonist-stimulated (80% inhibition in COS-7 cells) or forskolin-stimulated cAMP formation (up to 90% inhibition in HeLa cells). This serotonin effect (EC50 = 20 nM) could be competitively antagonized by metitepine and spiperone (Ki = 81 and 31 nM, respectively) and could also be blocked by pretreatment of cells with pertussis toxin. In both cell types, 5-HT failed to stimulate adenylyl cyclase through the expressed receptors. In HeLa cells, 5-HT also stimulated phospholipase C (∼ 40–75% stimulation of formation of inositol phosphates). Again, this effect was inhibited by metitepine. However, the EC50 of 5-HT was considerably higher (∼ 3.2 εM) than that found for inhibition of adenylyl cyclase. Both pathways were demonstrated to be similarly affected by pertussis toxin. These findings indicate that like the M2 and M3 muscarinic cholinergic receptors, the 5-HT1A receptor can couple to multiple transduction pathways with varying efficiencies via pertussis toxin-sensitive G-proteins. The lack of stimulation of cAMP formation by this 5-HT1A receptor may suggest the existence of another pharmacologically closely related receptor.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)63778-0