Simulation of nonstationary EEG

In this paper we present a systematic method for generating simulations of nonstationary EEG. Such simulations are needed, for example, in the evaluation of tracking algorithms. First a state evolution process is simulated. The states are initially represented as segments of stationary autoregressiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 1997-05, Vol.76 (5), p.349-356
Hauptverfasser: Kaipio, J P, Karjalainen, P A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a systematic method for generating simulations of nonstationary EEG. Such simulations are needed, for example, in the evaluation of tracking algorithms. First a state evolution process is simulated. The states are initially represented as segments of stationary autoregressive processes which are described with the corresponding predictor coefficients and prediction error variances. These parameters are then concatenated to give a piecewise time-invariant parameter evolution. The evolution is projected onto an appropriately selected set of smoothly time-varying functions. This projection is used to generate the final EEG simulation. As an example we use this method to simulate the EEG of a drowsy rat. This EEG can be described as toggling between two states that differ in the degree of synchronization of the activity-inducing neuron clusters.
ISSN:0340-1200
1432-0770
DOI:10.1007/s004220050348