Quantitative cytochemistry of 3 beta-hydroxysteroid dehydrogenase activity in avian granulosa cells during follicular maturation

Previous studies have shown that biosynthesis of progesterone, the major steroid product of hen granulosa cells, increases during follicular maturation. However, the contribution of individual granulosa cells to the total progesterone production of each follicle is not known. The objective of the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 1989-05, Vol.40 (5), p.1007-1011
Hauptverfasser: Marrone, B.L. (Los Alamos National Laboratory, Los Alamos, New Mexico), Sebring, R.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have shown that biosynthesis of progesterone, the major steroid product of hen granulosa cells, increases during follicular maturation. However, the contribution of individual granulosa cells to the total progesterone production of each follicle is not known. The objective of the present study was to determine the presence and relative activity of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in individual granulosa cells isolated from each of the five largest yolk-filled preovulatory follicles of laying hens. 3 beta-HSD cytochemistry in the presence or absence of pregnenolone substrate was performed on digitonin-permeabilized granulosa cells in suspension. The stained cells were fixed in a 70% ethanol solution until 1) the percentage of cells from each follicle that stained dark blue-indicating the presence of 3 beta-HSD activity-was determined by counting under light microscopy, and 2) the intensity of staining-indicating the relative amount of enzyme activity-was quantified using video image analysis. There were three findings. First, 100% of granulosa cells from each of the five largest preovulatory follicles stained positively for the presence of 3 beta-HSD activity. Second, the amount of 3 beta-HSD activity was normally distributed among granulosa cells in the population from each follicle. Third, as follicles matured from the fifth largest to the largest follicle, 3 beta-HSD activity increased steadily in individual cells, as indicated by increased staining intensities. The results indicate uniformity in the steroidogenic capacity of cells in the granulosa layer of hen preovulatory follicles.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod40.5.1007