The role of the axonal cytoskeleton in diabetic neuropathy
The neuropathy associated with diabetes includes well documented impairment of axonal transport, a reduction in axon calibre and a reduced capacity for nerve regeneration. All of those aspects of nerve function rely on the integrity of the axonal cytoskeleton. Alterations in the axonal cytoskeleton...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 1997-08, Vol.22 (8), p.951-956 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The neuropathy associated with diabetes includes well documented impairment of axonal transport, a reduction in axon calibre and a reduced capacity for nerve regeneration. All of those aspects of nerve function rely on the integrity of the axonal cytoskeleton. Alterations in the axonal cytoskeleton in experimental diabetes include an insulin-dependent non-enzymatic glycation of actin that is reflected in increased glycation of platelet actin in the clinical situation. There is a reduced synthesis of mRNA for the isoforms of tubulin that are associated with nerve growth and regeneration and an elevated non-enzymatic glycation of peripheral nerve tubulin in both diabetic patients and diabetic animals. mRNAs for neurofilament proteins are selectively reduced in the diabetic rat and post-translational modification of at least one of the neurofilament proteins is altered. There is some evidence that altered expression of isoforms of protein kinases may contribute to these changes. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1023/a:1022466624223 |