Metabolism of glutamine in lymphocytes
Pathways of glutamine metabolism in resting and proliferating rat thymocytes and established human T- and B-lymphoblastoid cell lines were evaluated by in vitro incubations of freshly prepared or cultured cells for one to two hours with [U 14C]glutamine. Complete recovery of glutamine carbons utiliz...
Gespeichert in:
Veröffentlicht in: | Metabolism, clinical and experimental clinical and experimental, 1989-08, Vol.38 (8), p.29-33 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pathways of glutamine metabolism in resting and proliferating rat thymocytes and established human T- and B-lymphoblastoid cell lines were evaluated by in vitro incubations of freshly prepared or cultured cells for one to two hours with [U
14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO
2 and oxaloacetate, which then was converted to aspartate, accounted for 76% and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Similar results were obtained with the lymphoblastoid T- and B-cell lines. Complete oxidation to CO
2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for only 25% and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in lymphocytes appears to be transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as a second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO
2 increased to 37% and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-
l-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations. |
---|---|
ISSN: | 0026-0495 1532-8600 |
DOI: | 10.1016/0026-0495(89)90136-4 |