Kinetic Isotope Effect and Reaction Mechanism of 2-Deoxy-scyllo-inosose Synthase Derived from Butirosin-producing Bacillus circulans

The mechanism of 2-deoxy-scyllo-inosose synthase reaction, a carbocycle formation step from D-glucose-6-phosphate in the biosynthesis of the 2-deoxystreptamine aglycon of clinically important aminocyclitol antibiotics, was investigated with a partially purified enzyme from butirosin-producing Bacill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antibiotics 1997/05/25, Vol.50(5), pp.424-428
Hauptverfasser: KUDO, FUMITAKA, YAMAUCHI, NORIAKI, SUZUKI, RIEKO, KAKINUMA, KATSUMI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of 2-deoxy-scyllo-inosose synthase reaction, a carbocycle formation step from D-glucose-6-phosphate in the biosynthesis of the 2-deoxystreptamine aglycon of clinically important aminocyclitol antibiotics, was investigated with a partially purified enzyme from butirosin-producing Bacillus circulans SANK 72073. Nonlabeled and double-labeled D-[4-2H, 3-18O]glucose-6-phosphate were used for cross-over experiment, and the oxime-TMS ether derivative of the 2-deoxy-scyllo-inosose product was analyzed by GC-MS. The deuterium label at C-4 of the substrate appeared to be retained at C-6 of the inosose product without scrambling of the double-labeled isotopes. Since the transient reduction of NAD+ cofactor was proved to be essential in the 2-deoxy-scyllo-inosose reaction, the hydride abstraction and returning appeared to take place within the same glucose molecule. The observed kinetic isotope effect was estimated to be kH/kD=2.4. These results strongly suggest that this carbocycle formation is catalyzed by a single 2-deoxy-scyllo-inosose synthase enzyme with catalytic requirement of NAD+, the mechanism of which appears to be resembled closely to the 2-deoxy-scyllo-inosose synthase in the Streptomyces fradiae.
ISSN:0021-8820
1881-1469
DOI:10.7164/antibiotics.50.424