Mmot1, a New Helix-Loop-Helix Transcription Factor Gene Displaying a Sharp Expression Boundary in the Embryonic Mouse Brain

Several genetic factors have been proven to contribute to the specification of the metencephalic-mesencephalic territory, a process that sets the developmental foundation for prospective morphogenesis of the cerebellum and mesencephalon. However, evidence stemming from genetic and developmental stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-07, Vol.272 (28), p.17632-17639
Hauptverfasser: Malgaretti, Nicoletta, Pozzoli, Ombretta, Bosetti, Alessandro, Corradi, Anna, Ciarmatori, Sonia, Panigada, Maddalena, Bianchi, Marco E., Martinez, Salvador, Consalez, G. Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several genetic factors have been proven to contribute to the specification of the metencephalic-mesencephalic territory, a process that sets the developmental foundation for prospective morphogenesis of the cerebellum and mesencephalon. However, evidence stemming from genetic and developmental studies performed in man and various model organisms suggests the contribution of many additional factors in determining the fine subdivision and differentiation of these central nervous system regions. In man, the cerebellar ataxias/aplasias represent a large and heterogeneous family of genetic disorders. Here, we describe the identification by differential screening and the characterization of Mmot1, a new gene encoding a DNA-binding protein strikingly similar to the helix-loop-helix factor Ebf/Olf1. Throughout midgestation embryogenesis, Mmot1is expressed at high levels in the metencephalon, mesencephalon, and sensory neurons of the nasal cavity. In vitro DNA binding data suggest some functional equivalence of Mmot1 and Ebf/Olf1, possibly accounting for the reported lack of olfactory or neural defects in Ebf−/− knockout mutants. The isolation of Mmot1 and of an additional homolog in the mouse genome defines a novel, phylogenetically conserved mammalian family of transcription factor genes of potential relevance in studies of neural development and its aberrations.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.28.17632