A structural basis for mutational inactivation of the tumour suppressor Smad4

The Smad4/DPC4 tumour suppressor is inactivated in nearly half of pancreatic carcinomas and to a lesser extent in a variety of other cancers. Smad4/DPC4, and the related tumour suppressor Smad2, belong to the SMAD family of proteins that mediate signalling by the TGF-β/activin/BMP-2/4 cytokine super...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1997-07, Vol.388 (6637), p.87-93
Hauptverfasser: Pavletich, Nikola P, Shi, Yigong, Hata, Akiko, Lo, Roger S, Massagué, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Smad4/DPC4 tumour suppressor is inactivated in nearly half of pancreatic carcinomas and to a lesser extent in a variety of other cancers. Smad4/DPC4, and the related tumour suppressor Smad2, belong to the SMAD family of proteins that mediate signalling by the TGF-β/activin/BMP-2/4 cytokine superfamily from receptor Ser/Thr protein kinases at the cell surface to the nucleus. SMAD proteins, which are phosphorylated by the activated receptor, propagate the signal, in part, through homo- and hetero-oligomeric interactions. Smad4/DPC4 plays a central role as it is the shared hetero-oligomerization partner of the other SMADs. The conserved carboxy-terminal domains of SMADs are sufficient for inducing most of the ligand-specific effects, and are the primary targets of tumorigenic inactivation. We now describe the crystal structure of the C-terminal domain (CTD) of the Smad4/DPC4 tumour suppressor, determined at 2.5 Å resolution. The structure reveals that the Smad4/DPC4 CTD forms a crystallographic trimer through a conserved protein-protein interface, to which the majority of the tumour-derived missense mutations map. These mutations disrupt homo-oligomerization in vitro and in vivo, indicating that the trimeric assembly of the Smad4/DPC4 CTD is critical for signalling and is disrupted by tumorigenic mutations.
ISSN:0028-0836
1476-4687
DOI:10.1038/40431