Identification of Transcription Factor Binding Sites Important in the Regulation of the Human Interleukin-5 Gene
This study identifies three regions of the human interleukin (IL)-5 promoter involved in binding nuclear factors from activated T cells. DNase I footprinting and mobility shift assays with nuclear proteins from the human T cell clone, SP-B21, demonstrated protein interactions with each of these resp...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1997-06, Vol.272 (26), p.16453-16465 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study identifies three regions of the human interleukin (IL)-5 promoter involved in binding nuclear factors from activated T cells. DNase I footprinting and mobility shift assays with nuclear proteins from the human T cell clone, SP-B21, demonstrated protein interactions with each of these response elements (REs), located between positions −79 and −45 (RE-I), −123 and −92 (RE-II), and −170 and −130 (RE-III). Two of these regions, RE-II and RE-III, have not previously been described to regulate IL-5 expression in T cells. The RE-II site was shown to be critical for inducible IL-5 promoter activity in transient transfection assays in D10.G4.1 T cells, while the RE-III site functions as a negative regulatory element. The activity of the RE-II site was specifically inhibited by cyclosporin A, and transfection assays with IL-5 constructs containing mutations in the RE-II site showed greatly reduced reporter gene activity. We have defined the sequence involved in stimulation-dependent transcription and have identified constitutive as well as inducible DNA-binding protein complexes that bind to RE-II. Antibodies against at least two members of the nuclear factor of activated T cells (NFAT) family of transcription factors are capable of binding to the IL-5 RE-II complexes, although they can be distinguished from previously identified NFAT-specific complexes by several characteristics. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.272.26.16453 |