Molecular evolution of enzyme structure: construction of a hybrid hamster/Escherichia coli aspartate transcarbamoylase

Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) is the first unique enzyme common to de novo pyrimidine biosynthesis and is involved in a variety of structural patterns in different organisms. In Escherichia coli, ATCase is a functionally independent, oligomeric enzyme; in hamster, it is part of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 1989-05, Vol.28 (5), p.442-450
Hauptverfasser: MAJOR, J. G. JR, WALES, M. E, HOUGHTON, J. E, MALEY, J. A, DAVIDSON, J. N, WILD, J. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) is the first unique enzyme common to de novo pyrimidine biosynthesis and is involved in a variety of structural patterns in different organisms. In Escherichia coli, ATCase is a functionally independent, oligomeric enzyme; in hamster, it is part of a trifunctional protein complex, designated CAD, that includes the preceding and subsequent enzymes of the biosynthetic pathway (carbamoyl phosphate synthetase and dihydroorotase). The complete complementary DNA (cDNA) nucleotide sequence of the ATCase-encoding portion of the hamster CAD gene is reported here. A comparison of the deduced amino acid sequences of the hamster and E. coli catalytic peptides revealed an overall 44% amino acid similarity, substantial conservation of predicted secondary structure, and complete conservation of all the amino acids implicated in the active site of the E. coli enzyme. These observations led to the construction of a functional hybrid ATCase formed by intragenic fusion based on the known tertiary structure of the bacterial enzyme. In this fusion, the amino terminal half (the "polar domain") of the fusion protein was provided by a hamster ATCase cDNA subclone, and the carboxyl terminal portion (the "equatorial domain") was derived from a cloned pyrBI operon of E. coli K-12. The recombinant plasmid bearing the hybrid ATCase was shown to satisfy growth requirements of transformed E. coli pyrB- cells. The functionality of this E. coli-hamster hybrid enzyme confirms conservation of essential structure-function relationships between evolutionarily distant and structurally divergent ATCases.
ISSN:0022-2844
1432-1432
DOI:10.1007/BF02603079