EPR Investigation of Water Oxidizing Photosystem II: Detection of New EPR Signals at Cryogenic Temperatures
Experiments are described which allow the detection and characterization of new EPR signals in photosystem II (PSII). PSII has been extensively studied with the water oxidising complex (WOC) poised in the S1 and S2 states. Other stages in the cycle of water oxidation lack characteristic EPR signals...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1997-06, Vol.36 (23), p.7086-7096 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experiments are described which allow the detection and characterization of new EPR signals in photosystem II (PSII). PSII has been extensively studied with the water oxidising complex (WOC) poised in the S1 and S2 states. Other stages in the cycle of water oxidation lack characteristic EPR signals for use as probes. In this study, experiments use multiple turnovers of PSII from an initial S1 state to allow new states of PSII to be studied. The first EPR signal detected, centered at g = 4.85 and termed the g = 5 signal, is suggested to be a new form of S2 probably formed by decay of S3 at cryogenic temperatures, but a novel form of oxidized non-heme iron cannot be fully excluded at present. The second signal is split around g = 2 and shows characteristics of signals formed by spin−spin interaction between two paramagnetic species. The split g = 2 signal is reversibly formed by illumination at |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi962179p |