Selection of glucose-assimilating variants of Acinetobacter calcoaceticus LMD 79.41 in chemostat culture

Glucose metabolism has been studied in two strains of Acinetobacter calcoaceticus. Strain LMD 82.3, was able to grow on glucose and possessed glucose dehydrogenase (EC 1.1.99.17). Glucose oxidation by whole cells was stimulated by PQQ, the prosthetic group of glucose dehydrogenase. PQQ not only incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antonie van Leeuwenhoek 1989-01, Vol.55 (1), p.39-52
Hauptverfasser: VAN SCHIE, B. J, ROUWENHORST, R. J, VAN DIJKEN, J. P, KUENEN, J. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucose metabolism has been studied in two strains of Acinetobacter calcoaceticus. Strain LMD 82.3, was able to grow on glucose and possessed glucose dehydrogenase (EC 1.1.99.17). Glucose oxidation by whole cells was stimulated by PQQ, the prosthetic group of glucose dehydrogenase. PQQ not only increased the rate of glucose oxidation and gluconic acid production but also shortened the lag phase for growth on glucose. Strain LMD 79.41 also possessed glucose dehydrogenase but was unable to grow on glucose. Batch cultures and carbon-limited chemostat cultures growing on acetate in the presence of glucose oxidized the sugar to gluconic acid, which was not further metabolized. However, after prolonged cultivation on mixtures of acetate and glucose, carbon-limited chemostat cultures suddenly acquired the capacity to utilize gluconate. This phenomenon was accompanied by the appearance of gluconate kinase and a repression of isocitrate lyase synthesis. In contrast to the starter culture, cells from chemostats which had been fully adapted to gluconate utilization, were able to utilize glucose as a sole carbon and energy source in liquid and solid media.
ISSN:0003-6072
1572-9699
DOI:10.1007/BF02309618