Different in Vitro and in Vivo Targeting Properties of the Transit Peptide of a Chloroplast Envelope Inner Membrane Protein

The triose phosphate 3-phosphoglycerate phosphate translocator (TPT) is a chloroplast envelope inner membrane protein whose transit peptide has structural properties typical of a mitochondrial presequence. To study the TPT transit peptide in more detail, we constructed two chimeric genes encompassin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-06, Vol.272 (24), p.15264-15269
Hauptverfasser: Silva-Filho, Marcio de Castro, Wieërs, Marie-Christine, Flügge, Ulf-Ingo, Chaumont, François, Boutry, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The triose phosphate 3-phosphoglycerate phosphate translocator (TPT) is a chloroplast envelope inner membrane protein whose transit peptide has structural properties typical of a mitochondrial presequence. To study the TPT transit peptide in more detail, we constructed two chimeric genes encompassing the TPT transit peptide and either 5 or 23 amino-terminal residues of the mature TPT, both linked to the reporter chloramphenicol acetyltransferase (cat) gene. The precursors were synthesized in vitro and translocated to and processed in purified plant mitochondria. However, this import was not specific since both precursors were also imported into isolated chloroplasts. To extend this analysis in vivo, the chimeric genes were introduced into tobacco by genetic transformation. Analysis of CAT distribution in subcellular fractions of transgenic plants did not confirm the data obtained in vitro. With the construct retaining only 5 residues of the mature TPT, CAT was found in the cytosolic fraction. Extension of the TPT transit peptide to 23 residues of the mature TPT allowed specific import and processing of CAT into chloroplasts. These results indicate that, despite its unusual structure, the TPT transit peptide is able to target a passenger protein specifically into chloroplasts, provided that NH2-terminal residues of the mature TPT are still present. The discrepancy between the in vitro and in vivo data suggests that the translocation machinery is more stringent in the latter case and that sorting of proteins might not be addressed adequately by in vitro experiments.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.24.15264