Potential of microsensor-based feedback bioactuators for biophysical cancer treatment
Solid tumors usually exhibit a poorly organized vascularization and a deviant energy metabolism which result in an acidic pH and large hypoxic areas in the tumor microenvironment. A lot of cell biological data support the hypothesis that such physico-chemical conditions are promoters of the microevo...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 1997, Vol.12 (4), p.301-309 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid tumors usually exhibit a poorly organized vascularization and a deviant energy metabolism which result in an acidic pH and large hypoxic areas in the tumor microenvironment. A lot of cell biological data support the hypothesis that such physico-chemical conditions are promoters of the microevolution of malignant cells, inhibitors of the immune response, and co-factors for tumor cell invasion. Our experimental
in vitro analyses and computer simulations indicate that the efficiency of immunotherapies and classical methods for cancer treatment might be improved if a physico-chemical microenvironment could be restored which reflects that found in normal tissue. In order to monitor and manipulate the tumor microenvironment, we suggest utilizing silicon-based feedback bioactuators which are controlled by on-line microsensors. These miniaturized bioactuators play the role of ‘pH clamps’ and can be implanted directly at the sites of inoperable tumors and metastases where they can reconstitute normal physico-chemical conditions. The drug application scheme can be precisely controlled by an integrated microprocessor. The paper summarizes the current state of development of such microsensor-based feedback bioactuators and outlines their potential for biophysical cancer treatment. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/S0956-5663(96)00071-1 |