A Sequential Two-Step Mechanism for the Production of the Mature p17:p12 Form of Caspase-3 in Vitro

The apoptotic cysteine protease, caspase-3, is expressed in cells as an inactive 32-kDa precursor from which 17 kDa (p17) and 12 kDa (p12) subunits of the mature caspase-3 are proteolytically generated during apoptosis. Two amino acid sequences, ESMD↓S (amino acids 25–29) and IETD↓S (amino acids 172...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1997-05, Vol.272 (20), p.13432-13436
Hauptverfasser: Han, Zhiyong, Hendrickson, Eric A., Bremner, Theodore A., Wyche, James H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The apoptotic cysteine protease, caspase-3, is expressed in cells as an inactive 32-kDa precursor from which 17 kDa (p17) and 12 kDa (p12) subunits of the mature caspase-3 are proteolytically generated during apoptosis. Two amino acid sequences, ESMD↓S (amino acids 25–29) and IETD↓S (amino acids 172–176), in the precursor have been defined as the cleavage sites for the production of the p17 and p12 subunits. Using a cell-free assay system, we demonstrate that the caspase-3 precursor appears to be cleaved first at the IETD↓S site, producing the p12 subunit and a 20-kDa (p20) peptide. Subsequently, the p20 is cleaved at the ESMD↓S site, generating the mature p17 subunit. The cleavage at the IETD↓S site required a protease activity that was selectively inhibited by the peptide, Ac-IETD-CHO (acetyl-IETD-aldehyde), and other protease inhibitors, such as the cowpox viral serine protease inhibitor, CrmA, andN-α-tosyl-l-phenylalanine chloromethyl ketone. The protease that catalyzed the cleavage at the ESMD/S site was selectively inhibited by another peptide, Ac-ESMD-CHO (acetyl-ESMD-aldehyde). More interestingly, the caspase-3 inhibitor, Ac-DEVD-CHO, but not the caspase-1 inhibitor, Ac-YVAD-CHO, also selectively inhibited the protease activity that cleaves at the ESMD↓S site. This indicated that the cleavage at the ESMD↓S site was either autocatalytic or that it required a caspase-3-like activity. In summary, we demonstrate that production of the p17:p12 form of caspase-3 is a sequential two-step process and appears to require two distinct enzymatic activities.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.20.13432