Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum : A detailed cellular co-expression study

The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of (35S)-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1997-02, Vol.76 (3), p.763-774
Hauptverfasser: AUGOOD, S. J, WESTMORE, K, EMSON, P. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of (35S)-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A (enkephalin) and preprotachykinin (substance P) messenger RNA was also examined within forebrain structures. Cellular sites of enkephalin (substance P) and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of substance P and proneurotensin messenger RNA expression were detected using (35S)-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells. An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Calleja, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells, demonstrating clearly that these dual-labelled cells expressed both messenger RNAs. By contrast, the hybridization signals for proneurotensin and enkephalin, and proneurotensin and dopamine and adenylate cyclase phosphoprotein-32 were generally coincident, at least within the neostriatum; most proneurotensin messenger RNA-positive cells expressed enkephalin messenger RNA and were also positive for dopamine and adenylate cyclase phosphoprotein-32 messenger RNA. However, oc
ISSN:0306-4522
DOI:10.1016/S0306-4522(96)00449-6